3.3. Derivatives of Products and Quotients

(1)
$$\frac{d}{dx}[f(x)g(x)] =$$

(2)
$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] =$$

Examples

Example 3.3.1. Find f'(x) if $f(x) = (x^2 + 2x + 1)(3x^4 - 2x^2 + 4)$

Example 3.3.2. Find g'(t) if $g(t) = 5t^4(\sqrt[3]{t} + 1)$

Example 3.3.3. Find f'(w) if $f(w) = \frac{w^2 + 5w + 5}{3w^4 + w^2 - 1}$

Example 3.3.4. Find h'(x) if $h(x) = \frac{\sqrt{x}+1}{\sqrt{x}-1}$

Example 3.3.5. *Find* h'(x) *for* $h(x) = \frac{e^x}{f(x)}$

Example 3.3.6. Find the derivative of $y = e^x \ln(x^3)$

Example 3.3.7. Find the derivative of $f(x) = \frac{e^x}{3x - 5x^2}$

Section 3.3

Example 3.3.8. Find the equation of the line tangent to the graph of $f(x) = \frac{x-4}{x+2}$ at (-1, -5).

Example 3.3.9. Find f'(x) and the find the value(s) of x where f'(x) = 0 for $f(x) = \frac{x}{x^2 + 9}$

Section 3.3

Example 3.3.10. A communications company has installed a new cable television system in a city. The total number N (in thousands) of subscribers t months after the installation of the system is given by

$$N(t) = \frac{180t}{t+4}$$

(1) Find N'(t).

(2) Find N'(16).