3.7. Elasticity of Demand

Definition 3.7.1. The relative rate of change of a function $f(x)$ is $\frac{f^{\prime}(x)}{f(x)}$. The percentage rate of change is $100 \times \frac{f^{\prime}(x)}{f(x)}$.

Example 3.7.1. Find the relative rate of change for $f(x)=9 x-5 \ln x$ at $x=7$

Theorem 3.7.1. If price and demand are related by $x=f(p)$, then the elasticity of demand is given by

$$
E(p)=-\frac{p f^{\prime}(p)}{f(p)}
$$

Example 3.7.2. The price p and the demand x for a product is related by the pricedemand equation

$$
x+500 p=10000
$$

Find the elasticity of demand, $E(p)$.

$E(p)$	Demand	Interpretation	Revenue
$0<E(p)<1$	Inelastic	Demand is not sensitive to changes in price; that is, percentage change in price produces a smaller percentage change in demand. Demand is sensitive to changes in price; that is, a percentage change in price produces a larger percentage change in demand. A percentage change in price produces the same percentage change in demand.	A price increase will increase revenue.
A price increase will decrease revenue.			

Example 3.7.3. Use the price-demand equation to determine whether the demand is elastic, inelastic, or has unit elasticity for $x=f(p)=875-p-0.05 p^{2}$ at $p=50,70$, and 100. Explain whether a price increase/decrease will increase/decrease revenue for each p value.

Example 3.7.4. The price-demand equation for an order of fries at a restaurant is

$$
x+1000 p=2500
$$

Currently, the price of an order of fries is 0.99 . If the price decreases by 10%, will revenue increase or decrease?

