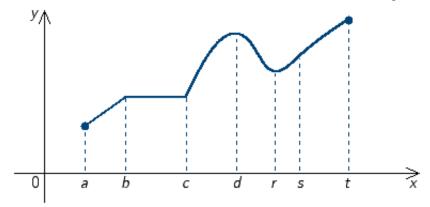
4.5. Absolute Maxima and Minima DEFINITIONS

y = f(x) is a function with domain D.

(1) f has an or
$at x = c \text{ if } f(c) \ge f(x) \text{ for all } x \text{ in } D. \ f(c) \text{ is the } \underline{\hspace{2cm}}.$
(2) f has an or
$at x = c \text{ if } f(c) \le f(x) \text{ for all } x \text{ in } D. \ f(c) \text{ is the } \underline{\hspace{2cm}}.$
(3) The minimum and maximum values are called the of f .
(4) f has an or
$at x = c \text{ if } f(c) \ge f(x) \text{ for } x \text{ "close enough" to } c. \ f(c) \text{ is the } _$
(5) f has an or
$at x = c \text{ if } f(c) \leq f(x) \text{ for } x \text{ "close enough" to } c. f(c) \text{ is the } \underline{\hspace{2cm}}$
(6) "close enough" to c means there is an open interval around c where the statement is true. This open interval can be very small.
(7) The local minimum and local maximum values are called the of f .

4.5. Examples

Example 4.5.1. Find all absolute and local extrema and where they occur.



Example 4.5.2. Select ALL the correct choices $f(x) = 2 - 4x - \frac{4}{x}$ over the interval $(-\infty, 0)$

- (1) f(x) has no maximum
- (2) f(x) has no minimum
- (3) f(x) has an absolute maximum at x = -1
- (4) f(x) has an absolute minimum at x = -1
- (5) f(x) has an absolute maximum of 2
- (6) f(x) has an absolute minimum of 2

Section 4.5

Useful Theorems

Theorem 4.5.1 (Second Derivative Test). Suppose y = f(x) is such that f'(c) = 0 (and f is twice differentiable around c).

- (1) If f''(c) > 0 then _____
- (2) If f''(c) < 0 then _____
- (3) If f''(c) = 0 or f''(x) does not exist, then

Theorem 4.5.2. If f(x) has only one critical number in some interval I, then statements (1) and (2) in Theorem 4.5.1 are <u>absolute</u> extrema.

Example 4.5.3. Find the local extrema of the function of $f(x) = x^3 - 4x^2 + 3x - 10$ using the second derivative test.

Example 4.5.4. Find the absolute extrema of $f(x) = 5 \ln x - x$ over $(0, \infty)$

Section 4.5

The Extreme Value Theorem: If f is continuous on the closed interval [a, b], then f will attain a minimum and a maximum in the interval.

In other words, if you consider the interval [a, b] as the domain of f, there will be at least one number c in [a, b] where f(c) is the maximum, and at least one number d in [a, b] where f(d) is the minimum.

Closed Interval Method

To find the absolute minimum and maximum values of a continuous function f on a closed interval [a, b]:

- Step 1. Find the critical numbers of f in (a, b).
- Step 2. Find the function value at all critical value(s) found in step 1.
- Step 3. Find f(a) and f(b).
- Step 4. The largest value from steps 2 and 3 is the maximum value and the smallest value from steps 2 and 3 is the minimum value.

Examples

Example 4.5.5. Find all critical values and absolute extrema on the given interval.

$$f(x) = 6x - x^2, [-1, 4]$$

- (1) $min\ value\ is\ -7$, $max\ value\ is\ 9$
- (2) $min\ value\ is\ -7$, $max\ value\ is\ 40$
- (3) $min\ value\ is\ -5$, $max\ value\ is\ 8$
- (4) $min\ value\ is\ -5$, $max\ value\ is\ 40$

Section 4.5 5

Example 4.5.6. Find all critical values and absolute extrema on the given interval.

$$f(x) = \frac{x^2 - 4}{x^2 + 4}, [-4, 4]$$

Example 4.5.7. Find all the absolute extrema of $f(x) = \ln x$ over the interval [1, 2].