5.1. Antiderivatives and Indefinite Integrals

- (1) A function F is called an ______ of f on an interval I of F'(x) = f(x) for all x in I.
- (2) Theorem: If F is an antiderivative of f on an interval I and C is any constant, then F(x) + C also defines an antiderivative of f on I.
- (4) Notation: If F(x) is an antiderivative of f(x) then we write

Rules for the Most General Antiderivative of f

(1) $\int k \, dx =$ (where k is a constant) (2) $\int f(x) \pm g(x) \, dx =$ (where k is a constant) (3) $\int kg(x) \, dx =$ (where k is a constant) (4) $\int x^n \, dx =$ (for $n \neq -1$)

- (5) $\int x^{-1} dx =$
- (6) $\int e^x dx =$

Examples

Example 5.1.1. Evaluate
$$\int -6 \, dx$$
.

Example 5.1.2. Evaluate $\int dx$.

Example 5.1.3. Evaluate
$$\int -4x^7 dx$$
.

Example 5.1.4. Evaluate $\int (3 + 2u^{-4} - \sqrt{u}) \, du$.

Example 5.1.5. Evaluate
$$\int \frac{-4}{z} dz$$
.

Example 5.1.6. Evaluate
$$\int t + 12e^t dt$$
.

Example 5.1.7. Find y if
$$\frac{dy}{dx} = -6x^{-2} + x^{-1}$$
.

Example 5.1.8. Find y so that y(1) = -4 and $\frac{dy}{dx} = -6x^{-2} + x^{-1}$.

Section 5.1

Example 5.1.9. Find the equation of the curve that passes through (1,3) if the slope is given by

$$\frac{dy}{dx} = 12x^2 - 12x$$

for each x.

Example 5.1.10. Evaluate $\int \frac{x^3 + 4x^2 - 3x}{x^3} dx$.

Example 5.1.11. The marginal average cost of producing x smart watches is given by

$$\overline{C}'(x) = -\frac{5000}{x^2}$$
 $\overline{C}(100) = 250$

where $\overline{C}(x)$ is the average cost in dollars. Find the average cost function and cost functions. What are the fixed costs?