5.1. Antiderivatives and Indefinite Integrals

(1) A function F is called an \qquad of f on an interval I of $F^{\prime}(x)=f(x)$ for all x in I.
(2) Theorem: If F is an antiderivative of f on an interval I and C is any constant, then $F(x)+C$ also defines an antiderivative of f on I.
(3) If F is an antiderivative of f, then we describe the antiderivative of a function in the most general terms by using the notation \qquad to represent all possible antiderivatives of f.
(4) Notation: If $F(x)$ is an antiderivative of $f(x)$ then we write

Rules for the Most General Antiderivative of f
(1) $\int k d x=$
(where k is a constant)
(2) $\int f(x) \pm g(x) d x=$
(3) $\int k g(x) d x=$
(where k is a constant)
(4) $\int x^{n} d x=$
(for $n \neq-1$)
(5) $\int x^{-1} d x=$
(6) $\int e^{x} d x=$

Examples

Example 5.1.1. Evaluate $\int-6 d x$.

Example 5.1.2. Evaluate $\int d x$.

Example 5.1.3. Evaluate $\int-4 x^{7} d x$.

Example 5.1.4. Evaluate $\int\left(3+2 u^{-4}-\sqrt{u}\right) d u$.

Example 5.1.5. Evaluate $\int \frac{-4}{z} d z$.

Example 5.1.6. Evaluate $\int t+12 e^{t} d t$.

Example 5.1.7. Find y if $\frac{d y}{d x}=-6 x^{-2}+x^{-1}$.

Example 5.1.8. Find y so that $y(1)=-4$ and $\frac{d y}{d x}=-6 x^{-2}+x^{-1}$.

Example 5.1.9. Find the equation of the curve that passes through $(1,3)$ if the slope is given by

$$
\frac{d y}{d x}=12 x^{2}-12 x
$$

for each x.

Example 5.1.10. Evaluate $\int \frac{x^{3}+4 x^{2}-3 x}{x^{3}} d x$.

Example 5.1.11. The marginal average cost of producing x smart watches is given by

$$
\bar{C}^{\prime}(x)=-\frac{5000}{x^{2}} \quad \bar{C}(100)=250
$$

where $\bar{C}(x)$ is the average cost in dollars. Find the average cost function and cost functions. What are the fixed costs?

