6.1. Area Between Curves

Theorem 6.1.1 (Area between two curves). If $f(x) \ge g(x)$ for all x in [a, b], then the area between the graphs of f and g over the interval [a, b] is

$$\lim_{n \to \infty} \sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x = \int_a^b f(x) - g(x) \, dx$$

In general, the area between the graphs of f and g over the interval [a, b] is

Steps for Finding Area Between Two Curves

- (1) Set both functions equal to each other and find intersection points.
- (2) If interval was given, check if any intersection point(s) you find in step (1) falls inside of the given interval. If no interval was given, then plot all intersection points on a number line (in this case, you should have at least two intersection points).
- (3) Test a value from each subinterval you have into both functions to determine which function is greater within that subinterval.
- (4) Set up an integral for each subinterval and take the larger function minus the smaller function over that subinterval. Add all your integrals together.

Examples

Example 6.1.1. Find the area between the graphs y = -6x - 2 and y = 10 for $-2 \le x \le 2$.

Example 6.1.2. Find the area between the graphs y = -6x - 2 and y = 10 for $-4 \le x \le 0$.

Example 6.1.3. Find the area between the graphs $y = -4x^2 - 8x + 5$ and $y = 3x^2 - 8x - 2$.

Example 6.1.4.
$$y = 1 + \sqrt{x}$$
 and $y = \frac{3+x}{3}$