7.2. Partial Derivatives

Definition 7.2.1. Let $z=f(x, y)$ be a function of two variables. We define the partial derivative of f with respect to x as
and the partial derivative of f with respect to y as

Remark 7.2.1. Some common notations are

Example 7.2.1. Find $f_{x}(x, y)$ and $\frac{\partial z}{\partial y}$ if $z=f(x, y)=5 x^{3} y-2 x y^{2}+7 x-4 y+6$.

Example 7.2.2. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ if $z=f(x, y)=x e^{y}+y \ln x+\frac{x}{y}$.

Example 7.2.3. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ if $z=f(x, y)=e^{2 x^{2}-x y+y^{2}}$.

Example 7.2.4. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ if $z=f(x, y)=x^{2} \ln \left(y^{3}+x y\right)$.

Example 7.2.5. Find $R_{p}(p, q)$ and $R_{q}(p, q)$ if $R(p, q)=12 p-4 q+4 p q-p^{4}+q^{3}$.

Second-order partial derivatives

Definition 7.2.2. Let $z=f(x, y)$ be a function of two variables. We define the second order partial derivative of f are
(1)
(2)
(3)
(4)

Example 7.2.6. Find $f_{x x}(x, y), \frac{\partial^{2} z}{\partial y^{2}}, f_{x y}(x, y)$, and $f_{y x}(x, y)$ if $z=f(x, y)=5 x^{3} y-$ $2 x y^{2}+7 x-4 y+6$.

Example 7.2.7. Find $f_{y x}(x, y)$ if $z=f(x, y)=x e^{y}+y \ln x+\frac{x}{y}$.

Example 7.2.8. Find $f_{x x}(x, y)$ if $z=f(x, y)=e^{2 x^{2}-x y+y^{2}}$.

Example 7.2.9. Find $f_{x y}(x, y)$ if $z=f(x, y)=x^{2} \ln \left(y^{3}+x y\right)$.

Example 7.2.10. Find $R_{q p}(p, q)$ and $R_{q q}(p, q)$ if $R(p, q)=12 p-4 q+4 p q-p^{4}+q^{3}$.

Example 7.2.11. For $C(x, y)=3 x^{2}+10 x y-8 y^{2}+4 x-15 y-120$, find $C_{y y}(3,-2)$.

Applications

Example 7.2.12. A company manufactures two types of calculators, A and B. The weekly price-demand equations and cost equations are

$$
\begin{aligned}
& p=15-2 x+y \\
& q=20+x-2 y \\
& C(x, y)=20-2 x+y
\end{aligned}
$$

where p is the unit price of A, q is the unit price of B, x is the weekly demand for A, y is the weekly demand for B, and $C(x, y)$ is the cost function.
(1) Find the profit function $P(x, y)$ (in thousands of dollars).
(2) Find $P_{x}(2,4)$
(3) Find x and y such that $P_{x}(x, y)=0$ and $P_{y}(x, y)=0$ simultaneously.

