3.1. Rate of Change and Slope

Definition 3.1.1. The change of a function, $y=f(x)$, over an interval $a \leq x \leq b$ is

Definition 3.1.2. The average rate of change of a function, $y=f(x)$, over an interval $a \leq x \leq b$ is

Definition 3.1.3. The secant line from $x=a$ to $x=b$ of a function, $y=f(x)$, is the line connecting the two points $(a, f(a))$ and $(b, f(b))$. So its slope is

Example 3.1.1. Given $y=5 x^{3}$, find
(1) the change in y when x changes from -1 to 2 .
(2) the average rate of change in y when x changes from -1 to 2 .
(3) the slope of the secant line connecting the points $(-1, f(-1))$ and $(2, f(2))$ $(f(x)=y)$.

Example 3.1.2. Given $y=-3 \sqrt{x}$, find
(1) the change in y when x changes from 4 to 25 .
(2) the average rate of change in y when x changes from 4 to 25 .
(3) the slope of the secant line connecting the points $(4, f(4))$ and $(25, f(25))$ $(f(x)=y)$.

Velocities

Definition 3.1.4. If $y=f(x)$ is a function representing the position of and object on a straight line at time x then the average velocity from $x=a$ to $x=b$ is given by

Example 3.1.3. Given $y=\sqrt[3]{x}$, where y is the straight line distance from a point and x is time, find the average velocity from $x=1$ to $x=27$.

Difference Quotient

Definition 3.1.5. Given a function $y=f(x)$, a difference quotient is an expression of the form

Example 3.1.4. Given $f(x)=x-3 x^{2}$, find $\frac{f(a+h)-f(a)}{h}$ when $a=-2$ and $h \neq 0$.

Example 3.1.5. Given $f(x)=\frac{1}{x}$, find $\frac{f(x)-f(a)}{x-a}$ when $a=3$ and $x \neq a$.

Homework: 3.1 p. 140 \# 1-7 odd, 19, 23, 41, 45, 55, work e-grade practice at least 2 times.

