3.1. RATE OF CHANGE AND SLOPE

Definition 3.1.1. The change of a function, y = f(x), over an interval $a \le x \le b$ is

Definition 3.1.2. The average rate of change of a function, y = f(x), over an interval $a \le x \le b$ is

Definition 3.1.3. The secant line from x = a to x = b of a function, y = f(x), is the line connecting the two points (a, f(a)) and (b, f(b)). So its slope is

Section 3.1

Example 3.1.1. Given $y = 5x^3$, find

- (1) the change in y when x changes from -1 to 2.
- (2) the average rate of change in y when x changes from -1 to 2.
- (3) the slope of the secant line connecting the points (-1, f(-1)) and (2, f(2))(f(x) = y).

Example 3.1.2. Given $y = -3\sqrt{x}$, find

- (1) the change in y when x changes from 4 to 25.
- (2) the average rate of change in y when x changes from 4 to 25.
- (3) the slope of the secant line connecting the points (4, f(4)) and (25, f(25))(f(x) = y).

Velocities

Definition 3.1.4. If y = f(x) is a function representing the position of and object on a straight line at time x then the **average velocity** from x = a to x = b is given by

Example 3.1.3. Given $y = \sqrt[3]{x}$, where y is the straight line distance from a point and x is time, find the average velocity from x = 1 to x = 27.

Difference Quotient

Definition 3.1.5. Given a function y = f(x), a difference quotient is an expression of the form

Example 3.1.4. Given $f(x) = x - 3x^2$, find $\frac{f(a+h) - f(a)}{h}$ when a = -2 and $h \neq 0$.

Example 3.1.5. Given $f(x) = \frac{1}{x}$, find $\frac{f(x) - f(a)}{x - a}$ when a = 3 and $x \neq a$.

Homework: 3.1 p. 140 # 1-7 odd, 19, 23, 41, 45, 55, work e-grade practice at least 2 times.