3.4. Derivatives of Constants, Power Forms, and Sums

For the following c and n represents constant real numbers.
(1) $\frac{d}{d x}(c)=$
(2) $\frac{d}{d x}(x)=$
(3) $\frac{d}{d x}\left(x^{n}\right)=$
(4) $\frac{d}{d x}(c f(x))=$
(5) $\frac{d}{d x}(f(x)+g(x))=$
(6) $\frac{d}{d x}(f(x)-g(x))=$

Examples

Example 3.4.1. Find $\frac{d y}{d x}$ if $y=\sqrt{31}$

Example 3.4.2. Find $\frac{d}{d x}\left(x^{31}\right)$

Example 3.4.3. Find $\frac{d}{d x}\left(4 x^{31}\right)$

Example 3.4.4. Find $f^{\prime}(x)$ if $f(x)=\frac{1}{4 x^{31}}$

Example 3.4.5. Find $f^{\prime}(x)$ if $f(x)=\frac{4}{x^{31}}$

Example 3.4.6. Find $f^{\prime}(x)$ if $f(x)=x^{\pi}$

Example 3.4.7. Find $\frac{d y}{d x}$ if $f(x)=x^{4} x^{5}$

Example 3.4.8. Find $f^{\prime}(x)$ if $f(x)=\sqrt{31} x$

Example 3.4.9. Find $f^{\prime}(x)$ if $f(x)=\sqrt{(31 x)}$

Example 3.4.10. Find $\frac{d y}{d x}$ if $y=5 x^{3}-2 x^{2}+7 x-4$

Example 3.4.11. Find the equation of the line tangent to the graph of $f(x)=\left(x^{3}+\right.$ $4 x)^{2}$ at $x=1$.

Example 3.4.12. Find $\frac{d}{d x}\left(3 x^{14}-\frac{1}{14} x^{-12}-8\right)$

Example 3.4.13. Find $f^{\prime}(x)$ if $f(x)=\frac{5 x^{3}-2 x^{2}+7 x-4}{\sqrt[3]{x}}$

Example 3.4.14. Find $h^{\prime}(3)$ if $h(x)=3 f(x)-4 g(x)-9$ and $f(3)=4, f^{\prime}(3)=-2$, $g(3)=1, g^{\prime}(3)=5$.

Example 3.4.15. Find the equation of the line tangent to the graph of $f(x)=x^{4}-x^{3}$ at $(1,0)$.

Example 3.4.16. Where is $f(x)=x^{2 / 3}$ differentiable?

Example 3.4.17. Where is $f(x)=x^{4 / 3}$ differentiable?

Example 3.4.18. Find all value(s) of x for which the graph of $f(x)=-2 x^{3}+3 x^{2}+$ $36 x$ has a horizontal tangent line.

Example 3.4.19. An object moves along the y-axis (marked in feet) according to the formula $y=2 x^{2}-7 x-6$ where x is the time in seconds. Find the velocity of the object in feet per second when $x=0$.

Example 3.4.20 (84). Suppose that in a given gourmet food store, people are willing to buy x pounds of chocolate candy per day at $\$ p$ per quarter pound, as given by the price-demand equation

$$
x=10+\frac{180}{p} \quad 2 \leq p \leq 10
$$

Find the demand and instantaneous rate of change of demand with respect to price when the price is $\$ 5$. Interpret.

Homework: 3.4 p. 185 \# 1-53 eoo, 71, 77, 81, 83, work e-grade practice at least 2 times.

