3.5. Derivatives of Products and Quotients

(1) $\frac{d}{d x}[f(x) g(x)]=$
(2) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=$

Examples

Example 3.5.1. Find $f^{\prime}(x)$ if $f(x)=\left(x^{2}+2 x+1\right)\left(3 x^{4}-2 x^{2}+4\right)$

Example 3.5.2. Find $g^{\prime}(t)$ if $g(t)=5 t^{4}(\sqrt[3]{t}+1)$

Example 3.5.3. Find $f^{\prime}(w)$ if $f(w)=\frac{w^{2}+5 w+5}{3 w^{4}+w^{2}-1}$

Example 3.5.4. Find $h^{\prime}(x)$ if $h(x)=\frac{\sqrt{x}+1}{\sqrt{x}-1}$

Example 3.5.5. Find $\frac{d}{d x}\left(3-5 x^{1 / 5}\right)\left(4 x^{-1 / 2}-3\right)$

Example 3.5.6. Find the equation of the line tangent to the graph of $f(x)=\frac{x-4}{x+2}$ at $(-1,-5)$.

Example 3.5.7. Suppose $f(-3)=4, f^{\prime}(-3)=-1, g(-3)=-2$, and $g^{\prime}(-3)=5$. Find
(1) $h^{\prime}(-3)$ if $h(x)=f(x)+g(x)$
(2) $(f g)^{\prime}(-3)$
(3) $h^{\prime}(-3)$ if $h(x)=\frac{f(x)}{g(x)}$
(4) $h^{\prime}(-3)$ where $h(x)=\frac{x^{2} g(x)}{f(x)}$

Example 3.5.8. In the early days os quantitative learning theory (around 1917), L. L. Thurstone found that a given person successfully accomplished $N(x)$ acts after x practice acts, as given by

$$
N(x)=\frac{100 x+200}{x+32}
$$

(1) Find the average rate of change of the number of acts accomplished, $N(x)$, from 1 practice acts to 3 practice acts.
(2) Find the instantaneous rate of change of $N(x)$ at $x=1$.
(3) Find the instantaneous rate of change of $N(x)$ at $x=3$.

Homework: 3.5 p. 194 \# 1-37 eoo, 47-55 eoo, 65, 69, work e-grade practice at least 2 times.

