3.6. The Chain Rule

Theorem 3.6.1 (Version 1). The derivative of a composite function, $h \circ g$, is

$$
(h \circ g)^{\prime}(x)=
$$

Theorem 3.6.2 (Version 2). If y is a function of u and u is a function of x, then we can find the derivative of y with respect to x by...

$$
\frac{d y}{d x}=
$$

Examples

Example 3.6.1. Find the derivative and simplify $f(x)=(2 x+3)^{5}$

Example 3.6.2. If $y=\left(5-2 x^{3}-x^{6}\right)^{-3}$ find y^{\prime}
(1) $-3\left(5-2 x^{3}-x^{6}\right)^{-4}\left(-6 x^{2}-6 x^{5}\right)$
(2) $-3\left(5-2 x^{3}-x^{6}\right)^{-2}\left(-6 x^{2}-6 x^{5}\right)$
(3) $-3\left(-6 x^{2}-6 x^{5}\right)^{-4}$
(4) $-3\left(-6 x^{2}-6 x^{5}\right)^{-2}$
(5) none of these

Example 3.6.3. Find the derivative of $f(x)=\sqrt[4]{3 x^{2}-4 x+5}$

Example 3.6.4. If $f(x)=(2 x+3)^{5}\left(x^{2}+1\right)^{7}$ find $f^{\prime}(x)$

Example 3.6.5. If $f(x)=x^{2} \sqrt[4]{2 x+3}$ find $f^{\prime}(x)$

Example 3.6.6. Find y^{\prime} when $y=\frac{\sqrt{2 x+1}}{(3 x-2)^{3}}$

Example 3.6.7. Find the equation of the line tangent to the graph of $y=\left(x^{2}-3 x+2\right)^{4}$ at $x=0$.

Example 3.6.8. Find the equation of the line tangent to the graph of $y=\left(x^{2}-3 x+2\right)^{4}$ at $x=1$.

Example 3.6.9. One of the value of x for which the graph of $f(x)=(x-1)(2-x)^{3}$ has a horizontal tangent line is
(1) -2
(2) $-\frac{4}{5}$
(3) $\frac{5}{4}$
(4) $\frac{1}{2}$
(5) none of these

Example 3.6.10. The total revenue from the sales of stereo speakers sold at $\$ p$ per stereo is given by $R(p)=80 p \sqrt{p+25}-400,20 \leq p \leq 100$. Find the instantaneous rate of change of $R(p)$ at $p=75$.

Homework: 3.6 p. $202 \# 5,9,17,23,27,35,41,47,49,51,55,69,75,77,79,81$, work e-grade practice at least 2 times.

