3.7. Marginal Analysis in Business and Economics

Definitions 3.7.1. If x is the number of units of a product produced during some time interval, then
Cost relative to the production at a given production rate.

In other words, if Total Cost is $C(x)$, then the is $C^{\prime}(x)$.
is the instantaneous rate of change of the Revenue relative to the production at a given production rate.

In other words, if Total Revenue is $R(x)$, then the \qquad is $R^{\prime}(x)$.
\qquad is the instantaneous rate of change of the Profit relative to the production at a given production rate.

In other words, if Total Profit is $P(x)=R(x)-C(x)$, then the
\qquad is $P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x)$.

- If $p=f(x)$ is the price-demand equation relating the price p to the demand x, then the revenue is given by $R=$

Example 3.7.1. If the profit for producing x items is given by $P(x)=-\frac{1}{4} x^{2}+15 x-$ 5000, find the marginal profit function y.

Example 3.7.2. If the total profit for producing x items is given by $P(x)=-\frac{1}{4} x^{2}+$ $15 x-5000$, find the marginal profit at $x=200$.

Example 3.7.3. The price p (in dollars) and the demand x for a product are related by the equation $x=24-8 p$. Find the revenue function, $R(x)$.

Example 3.7.4. For a particular product, the price-demand equation is $p=-\frac{5}{7} x+$ 1300 , where p is the price and x is the quantity, and the cost function is $C(x)=$ $4000+3 x$. What is the profit function, $P(x)$?

Example 3.7.5. The price p (in dollars) and the demand x for a product are related by the equation $x=24-8 p$. Find the marginal revenue function, $R^{\prime}(x)$.

Marginal v.s. exact

Theorem 3.7.1. The Marginal Cost of producing x items approximate the exact cost of producing the $(x+1)$-th item. In other words

Similar statement may be made about profit and revenue.
Example 3.7.6. The total cost (in dollars) of producing x units of a product is given by the function $C(x)$. Applying marginal analysis, which of the following would best be used to approximate the cost of producing the 18th unit?
(1) $C^{\prime}(18)$
(2) $C^{\prime}(17)$
(3) $C^{\prime}(18)-C^{\prime}(17)$
(4) $C^{\prime}(19)-C^{\prime}(18)$

Example 3.7.7. The total profit (in dollars) of producing x units of a product is given by the function $P(x)$. Which of the following statements best represents a correct interpretation of $P^{\prime}(66)=-10$?
(1) At a production level of 66 units, a unit increase in productions will decrease total profit by approximately $\$ 10$.
(2) At a production level of 66 units, a unit increase in productions will decrease marginal profit by approximately $\$ 10$.
(3) At a production level of 66 units, the total profit is approximately $\$ 10$.
(4) At a production level of 66 units, a unit increase in productions will increase total profit by approximately $\$ 10$.
(5) At a production level of 66 units, a unit increase in productions will increase marginal profit by approximately $\$ 10$.
(6) At a production level of 10 units, the total profit by approximately $\$ 66$.

Average
Definitions 3.7.2. If x is the number of units produced in some time interval, then

- The Average Cost function, $\bar{C}(x)$, is the Cost function divided by x. In other words

$$
\bar{C}(x)=\frac{C(x)}{x}
$$

- The Marginal Average Cost function, $\bar{C}^{\prime}(x)$, is the derivative of the $A v$ erage Cost Function. In other words, it is

$$
\bar{C}^{\prime}(x)
$$

- The Average Revenue function, $\bar{R}(x)$, is the Revenue function divided by x. In other words

$$
\bar{R}(x)=\frac{R(x)}{x}
$$

- The Marginal Average Revenue function, $\bar{R}^{\prime}(x)$, is the derivative of the Average Revenue Function. In other words, it is

$$
\bar{R}^{\prime}(x)
$$

- The Average Profit function, $\bar{P}(x)$, is the Profit function divided by x. In other words

$$
\bar{P}(x)=\frac{P(x)}{x}
$$

- The Marginal Average Profit function, $\bar{P}^{\prime}(x)$, is the derivative of the Average Profit Function. In other words, it is

$$
\bar{P}^{\prime}(x)
$$

Example 3.7.8. If the cost function is given by $C(x)=300-100 x+\frac{x^{2}}{20}$, find the average cost function, $\bar{C}(x)$.

Example 3.7.9. If the cost function is given by $C(x)=300-100 x+\frac{x^{2}}{20}$, find the marginal average cost function, $\bar{C}^{\prime}(x)$.

Example 3.7.10. If the average revenue function for a product is given by $\bar{R}(x)=$ $-\frac{x}{4}+300+\frac{1000}{x}$, find the revenue function, R.
(1) $R(x)=-\frac{x^{2}}{4}+300 x+1000$
(2) $R(x)=-\frac{1}{4}+300 x+\frac{1000}{x^{2}}$
(3) $R(x)=-\frac{x^{2}}{4}+300 x+\frac{1000}{x}$
(4) $R(x)=-\frac{1}{4}+\frac{300}{x}+\frac{1000}{x^{2}}$
(5) none of these

Homework: 3.7 p. $213 \# 3,9,11$, 13 work e-grade practice at least 2 times.

