4.4. Curve Sketching Techniques

Limits at Infinity

Definition 4.4.1. We say the limit as x approaches infinity is L, written $\lim _{x \rightarrow \infty} f(x)=$ L, if for some x large enough the graph of $y=f(x)$ moves closer and closer to the line $y=L$ as one moves to the right. Moreover, in this case the graph $y=f(x)$ has a horizontal asymptote $y=L$. (L must be a real number!)

Definition 4.4.2. We say the limit as x approaches negative infinity is L, written $\lim _{x \rightarrow-\infty} f(x)=L$, if for some x far enough to the left the graph of $y=f(x)$ moves closer and closer to the line $y=L$ as one moves further to the left. Moreover, in this case the graph $y=f(x)$ has a horizontal asymptote $y=L$. (L must be a real number!)

Example 4.4.1. Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ for the following function.

Example 4.4.2. Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ for the following function.

Steps for Determining Limits at Infinity Given Equations

(1) If $f(x)$ is a polynomial, then $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$. The sign is determined by the leading term.
(2) If $f(x)$ is a rational function, then
$\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$ if degree of numerator is higher than degree of denominator (Use step 1 to determine plus or minus)
$\lim _{x \rightarrow \pm \infty} f(x)=0$ if degree of denominator is higher than degree of numerator
$\lim _{x \rightarrow \pm \infty} f(x)=a / b$ if degree of numerator is equal to degree of denominator and a is the leading coefficient of numerator and b is leading coefficient of denominator.

Example 4.4.3. Find the limits $\lim _{x \rightarrow \infty} 4 x^{5}$ and $\lim _{x \rightarrow-\infty} 4 x^{5}$

Example 4.4.4. Find the limits $\lim _{x \rightarrow \infty}-4 x^{5}$ and $\lim _{x \rightarrow-\infty}-4 x^{5}$

Example 4.4.5. Find the limits $\lim _{x \rightarrow \infty}-4 x^{8}$ and $\lim _{x \rightarrow-\infty}-4 x^{8}$

Example 4.4.6. Find the limits $\lim _{x \rightarrow \infty}\left(-2 x^{3}+4 x^{2}-x+5\right)$ and $\lim _{x \rightarrow-\infty}\left(-2 x^{3}+4 x^{2}-x+5\right)$

Example 4.4.7. Find the limits $\lim _{x \rightarrow \infty}\left(-2 x^{3}+4 x^{5}-x+5\right)$ and $\lim _{x \rightarrow-\infty}\left(-2 x^{3}+4 x^{5}-x+5\right)$

Example 4.4.8. Find the limits $\lim _{x \rightarrow \infty} \frac{1}{x}$ and $\lim _{x \rightarrow-\infty} \frac{1}{x}$

Example 4.4.9. Find the limit $\lim _{x \rightarrow-\infty} \frac{-2 x^{2}+2}{5 x^{3}+x^{2}-1}$

Example 4.4.10. Find the horizontal asymptote(s) of $f(x)=\frac{-2 x^{2}+2}{5 x^{3}+x^{2}-1}$

Example 4.4.11. Find the limit $\lim _{x \rightarrow \infty} \frac{-2 x^{3}+x^{2}-1}{3 x^{2}+2}$

Example 4.4.12. Find the horizontal asymptote(s) of $f(x)=\frac{-2 x^{3}+x^{2}-1}{3 x^{2}+2}$

Example 4.4.13. Find the limit $\lim _{x \rightarrow \infty} \frac{3 x^{5}+2 x^{3}-1}{6 x^{5}+7}$

Example 4.4.14. Find the horizontal asymptote(s) of $f(x)=\frac{3 x^{5}+2 x^{3}-1}{6 x^{5}+7}$

Example 4.4.15. Select ALL the correct choices
(1) $\lim _{x \rightarrow \infty} 4 x^{4}-3 x^{2}+7=\infty$
(2) $\lim _{x \rightarrow \infty} 4 x^{4}-3 x^{2}+7=-\infty$
(3) $\lim _{x \rightarrow-\infty} 4 x^{4}-3 x^{2}+7=\infty$
(4) $\lim _{x \rightarrow-\infty} 4 x^{4}-3 x^{2}+7=-\infty$
(5) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-4 x+2}{x-6}=-\infty$
(6) $\lim _{x \rightarrow-\infty} \frac{4 x^{3}-6 x+1}{5-x^{2}}=\infty$
(7) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4-x^{2}}=3$
(8) $\lim _{x \rightarrow \infty} \frac{x^{4}-2 x}{5-x^{4}}=-1$
(9) $\lim _{x \rightarrow \infty} \frac{4-x^{3}}{6-x^{4}}=1$

Infinite Limits and Vertical Asymptotes (review from section 4.1) Definition 4.4.3. If $\lim _{x \rightarrow a} f(x)= \pm \infty, \lim _{x \rightarrow a^{-}} f(x)= \pm \infty$, or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, then the vertical line $x=a$ is a vertical asymptote of the curve $y=f(x)$.
Example 4.4.16. Find the vertical asymptote(s) of $f(x)=\frac{x^{2}-x-6}{x^{2}-9}$ (be careful!)

Example 4.4.17. Select ALL the correct choices
(1) $f(x)=\frac{x^{2}-1}{x+3}$ has a vertical asymptote at $x=-3$
(2) $f(x)=\frac{x^{2}-1}{x+3}$ has no vertical asymptote
(3) $f(x)=\frac{2 x}{x^{2}-3 x}$ has a vertical asymptote at $x=0$ and $x=3$
(4) $f(x)=\frac{2 x}{x^{2}+9}$ has a vertical asymptote at $x=-3$ and $x=3$
(5) $f(x)=\frac{x^{2}-1}{x+3}$ has a horizontal asymptote at $y=-3$
(6) $f(x)=\frac{x^{2}-1}{x+3}$ has no horizontal asymptote
(7) $f(x)=\frac{x+3}{x^{2}+4 x+3}$ has a horizontal asymptote at $y=0$
(8) $f(x)=\frac{x+3}{x^{2}+4 x+3}$ has a horizontal asymptote at $y=-1$
(9) $f(x)=\frac{4 x-3}{2-x}$ has a horizontal asymptote at $y=-4$

Oblique Asymptotes

If $R(x)=\frac{p(x)}{q(x)}$ is a rational function then R may have a oblique asymptote (also called a slant asymptote). To determine if one exists and find one we consider the degrees of p and q. Note that a horizontal asymptote describes the end behavior of R.

- If the degree of p is equal to

To find the oblique asymptote of a rational function of this form, you have to use long division of polynomials.

Example 4.4.18. Find all the asymptote(s) of $f(x)=\frac{4 x^{2}-2 x+4}{2 x+1}$

Graphing Strategy

(1) Find from $y=f(x)$:
(a) Domain: where is f defined? (Do NOT simplify before finding domain)
(b) x-intercepts: set $y=0$ and solve for x
(c) y-intercepts: set $x=0$ and solve for y
(d) Asympotes
(i) Vertical: find a so that $\lim _{x \rightarrow a} f(x)= \pm \infty$.
(ii) Horizontal: find L so that $\lim _{x \rightarrow \pm \infty} f(x)=L$.
(iii) Slant or Oblique: If $f(x)=r(x) / s(x)$ is a rational expression where the degree of the numerator is one more than the degree of the denominator, then there is a slant asymptote whose equation is the quotient of $r(x) / s(x)$.
(2) Find from $y=f^{\prime}(x)$:
(a) Critical Numbers: where is $f^{\prime}(x)$ equal to 0 or undefined in the domain of $f(x)$.
(b) Horizontal and Vertical Tangents of $f(x)$
(c) Intervals of increase and Interval of decrease of $f(x)$: use the sign of $f^{\prime}(x)$
(d) Local Extrema of $f(x)$
(3) Find from $y=f^{\prime \prime}(x)$:
(a) Intervals of Concave Up and Concave down of $f(x)$: use the sign of $f^{\prime \prime}(x)$
(b) Inflection Points of $f(x)$: where does $f^{\prime \prime}(x)$ change signs?

Examples

Example 4.4.19. Assuming f^{\prime}, $f^{\prime \prime}$ exist, select ALL the correct choices for the graph.

(1) $f^{\prime \prime}(x)>0$ on $(-\infty, b) \cup(d, e) \cup(e, f)$
(2) $f^{\prime \prime}(x)<0$ on $(b, d) \cup(f, \infty)$
(3) $f^{\prime}(x)<0$ on (c, d) only
(4) $f^{\prime}(x)>0$ on $(-\infty, c) \cup(d, e) \cup(e, \infty)$
(5) the graph has inflection points at $x=b, x=0$, and $x=f$
(6) the graph of f is concave downward on $(a, d) \cup(g, \infty)$
(7) $f(x)$ has extremum at $x=b, x=0$, and $x=f$
(8) $f^{\prime}(x)$ has extremum at $x=b, x=0$, and $x=f$
(9) $f^{\prime}(x)$ is increasing on $(-\infty, c) \cup(d, e) \cup(e, \infty)$
(10) $f^{\prime}(x)$ is decreasing on $(-\infty, d)$

Example 4.4.20. Sketch the graph $y=\frac{x^{3}-1}{x^{3}+1}, y^{\prime}=\frac{6 x^{2}}{(x+1)^{2}\left(x^{2}-x+1\right)^{2}}$,

$$
y^{\prime \prime}=-\frac{12 x\left(2 x^{3}-1\right)}{(x+1)^{3}\left(x^{2}-x+1\right)^{3}}
$$

Example 4.4.21. Sketch the graph $y=x^{5 / 3}-5 x^{2 / 3}, y^{\prime}=\frac{5(x-2)}{3 x^{1 / 3}}, y^{\prime \prime}=\frac{10(x+1)}{9 x^{4 / 3}}$

Example 4.4.22. Sketch the graph of $y=\frac{x^{3}-x}{x^{2}+3 x+2}$. Include domain, asymptotes and intercepts.

Homework: 4.4 p. $287 \# 1-14,15,19,23,27,33,39,43,83$ work e-grade practice at least 2 times.

