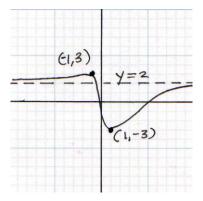
4.4. Curve Sketching Techniques

Limits at Infinity

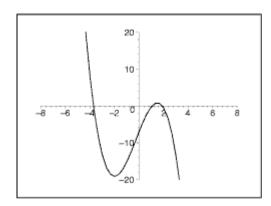
Definition 4.4.1. We say the limit as x approaches infinity is L, written $\lim_{x\to\infty} f(x) = L$, if for some x large enough the graph of y = f(x) moves closer and closer to the line y = L as one moves to the right. Moreover, in this case the graph y = f(x) has a horizontal asymptote y = L. (L must be a real number!)

Definition 4.4.2. We say the limit as x approaches negative infinity is L, written $\lim_{x\to-\infty} f(x) = L$, if for some x far enough to the left the graph of y = f(x) moves closer and closer to the line y = L as one moves further to the left. Moreover, in this case the graph y = f(x) has a horizontal asymptote y = L. (L must be a real number!)

Example 4.4.1. Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ for the following function.



Example 4.4.2. Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ for the following function.



Section 4.4

Steps for Determining Limits at Infinity Given Equations

- (1) If f(x) is a polynomial, then $\lim_{x\to\pm\infty} f(x) = \pm\infty$. The sign is determined by the leading term.
- (2) If f(x) is a rational function, then $\lim_{x \to \pm \infty} f(x) = \pm \infty$ if degree of numerator is higher than degree of denominator (Use step 1 to determine plus or minus)

 $\lim_{x\to\pm\infty}f(x)=0$ if degree of denominator is higher than degree of numerator

 $\lim_{x\to\pm\infty} f(x) = a/b$ if degree of numerator is equal to degree of denominator and a is the leading coefficient of numerator and b is leading coefficient of denominator.

Example 4.4.3. Find the limits $\lim_{x\to\infty} 4x^5$ and $\lim_{x\to-\infty} 4x^5$

Example 4.4.4. Find the limits $\lim_{x\to\infty} -4x^5$ and $\lim_{x\to-\infty} -4x^5$

Example 4.4.5. Find the limits $\lim_{x\to\infty} -4x^8$ and $\lim_{x\to-\infty} -4x^8$

Example 4.4.6. Find the limits $\lim_{x\to\infty} (-2x^3 + 4x^2 - x + 5)$ and $\lim_{x\to-\infty} (-2x^3 + 4x^2 - x + 5)$

Example 4.4.7. Find the limits $\lim_{x\to\infty} (-2x^3 + 4x^5 - x + 5)$ and $\lim_{x\to-\infty} (-2x^3 + 4x^5 - x + 5)$

Example 4.4.8. Find the limits $\lim_{x\to\infty} \frac{1}{x}$ and $\lim_{x\to-\infty} \frac{1}{x}$

Example 4.4.9. Find the limit $\lim_{x \to -\infty} \frac{-2x^2 + 2}{5x^3 + x^2 - 1}$

Example 4.4.10. Find the horizontal asymptote(s) of $f(x) = \frac{-2x^2 + 2}{5x^3 + x^2 - 1}$

Example 4.4.11. Find the limit
$$\lim_{x \to \infty} \frac{-2x^3 + x^2 - 1}{3x^2 + 2}$$

Example 4.4.12. Find the horizontal asymptote(s) of $f(x) = \frac{-2x^3 + x^2 - 1}{3x^2 + 2}$

Example 4.4.13. Find the limit $\lim_{x\to\infty} \frac{3x^5 + 2x^3 - 1}{6x^5 + 7}$

Example 4.4.14. Find the horizontal asymptote(s) of $f(x) = \frac{3x^5 + 2x^3 - 1}{6x^5 + 7}$

Example 4.4.15. Select ALL the correct choices

(1)
$$\lim_{x \to \infty} 4x^4 - 3x^2 + 7 = \infty$$

(2) $\lim_{x \to \infty} 4x^4 - 3x^2 + 7 = -\infty$
(3) $\lim_{x \to -\infty} 4x^4 - 3x^2 + 7 = \infty$
(4) $\lim_{x \to -\infty} 4x^4 - 3x^2 + 7 = -\infty$
(5) $\lim_{x \to \infty} \frac{3x^2 - 4x + 2}{x - 6} = -\infty$
(6) $\lim_{x \to -\infty} \frac{4x^3 - 6x + 1}{5 - x^2} = \infty$
(7) $\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{4 - x^2} = 3$
(8) $\lim_{x \to \infty} \frac{x^4 - 2x}{5 - x^4} = -1$
(9) $\lim_{x \to \infty} \frac{4 - x^3}{6 - x^4} = 1$

Infinite Limits and Vertical Asymptotes (review from section 4.1) **Definition 4.4.3.** If $\lim_{x \to a} f(x) = \pm \infty$, $\lim_{x \to a^-} f(x) = \pm \infty$, or $\lim_{x \to a^+} f(x) = \pm \infty$, then the vertical line x = a is a **vertical asymptote** of the curve y = f(x).

Example 4.4.16. Find the vertical asymptote(s) of $f(x) = \frac{x^2 - x - 6}{x^2 - 9}$ (be careful!)

Example 4.4.17. Select ALL the correct choices

(1)
$$f(x) = \frac{x^2 - 1}{x + 3}$$
 has a vertical asymptote at $x = -3$

(2)
$$f(x) = \frac{x^2 - 1}{x + 3}$$
 has no vertical asymptote

(3)
$$f(x) = \frac{2x}{x^2 - 3x}$$
 has a vertical asymptote at $x = 0$ and $x = 3$

(4)
$$f(x) = \frac{2x}{x^2 + 9}$$
 has a vertical asymptote at $x = -3$ and $x = 3$

(5)
$$f(x) = \frac{x^2 - 1}{x + 3}$$
 has a horizontal asymptote at $y = -3$

(6)
$$f(x) = \frac{x^2 - 1}{x + 3}$$
 has no horizontal asymptote

(7)
$$f(x) = \frac{x+3}{x^2+4x+3}$$
 has a horizontal asymptote at $y = 0$

(8)
$$f(x) = \frac{x+3}{x^2+4x+3}$$
 has a horizontal asymptote at $y = -1$

(9)
$$f(x) = \frac{4x-3}{2-x}$$
 has a horizontal asymptote at $y = -4$

Oblique Asymptotes

If $R(x) = \frac{p(x)}{q(x)}$ is a rational function then R may have a **oblique asymptote** (also called a **slant asymptote**). To determine if one exists and find one we consider the degrees of p and q. Note that a horizontal asymptote describes the *end behavior* of R.

• If the degree of p is equal to

To find the oblique asymptote of a rational function of this form, you have to use long division of polynomials. **Example 4.4.18.** Find all the asymptote(s) of $f(x) = \frac{4x^2 - 2x + 4}{2x + 1}$

Section 4.4

Graphing Strategy

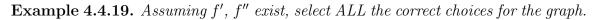
(1) Find from y = f(x):

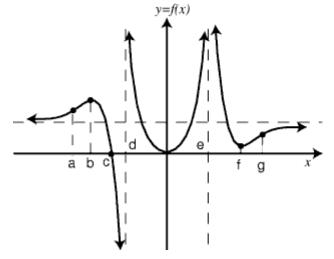
- (a) Domain: where is f defined? (Do NOT simplify before finding domain)
- (b) x-intercepts: set y = 0 and solve for x
- (c) y-intercepts: set x = 0 and solve for y
- (d) Asympotes
 - (i) Vertical: find a so that $\lim_{x \to a} f(x) = \pm \infty$.
 - (ii) Horizontal: find L so that $\lim_{x\to\pm\infty} f(x) = L$.
 - (iii) Slant or Oblique: If f(x) = r(x)/s(x) is a rational expression where the degree of the numerator is one more than the degree of the denominator, then there is a slant asymptote whose equation is the quotient of r(x)/s(x).
- (2) Find from y = f'(x):
 - (a) Critical Numbers: where is f'(x) equal to 0 or undefined in the domain of f(x).
 - (b) Horizontal and Vertical Tangents of f(x)
 - (c) Intervals of increase and Interval of decrease of f(x): use the sign of f'(x)
 - (d) Local Extrema of f(x)

(3) Find from y = f''(x):

- (a) Intervals of Concave Up and Concave down of f(x): use the sign of f''(x)
- (b) Inflection Points of f(x): where does f''(x) change signs?

Examples





- (1) f''(x) > 0 on $(-\infty, b) \cup (d, e) \cup (e, f)$
- (2) f''(x) < 0 on $(b, d) \cup (f, \infty)$
- (3) f'(x) < 0 on (c, d) only
- (4) f'(x) > 0 on $(-\infty, c) \cup (d, e) \cup (e, \infty)$
- (5) the graph has inflection points at x = b, x = 0, and x = f
- (6) the graph of f is concave downward on $(a, d) \cup (g, \infty)$
- (7) f(x) has extremum at x = b, x = 0, and x = f
- (8) f'(x) has extremum at x = b, x = 0, and x = f
- (9) f'(x) is increasing on $(-\infty, c) \cup (d, e) \cup (e, \infty)$
- (10) f'(x) is decreasing on $(-\infty, d)$

Example 4.4.20. Sketch the graph $y = \frac{x^3 - 1}{x^3 + 1}$, $y' = \frac{6x^2}{(x+1)^2(x^2 - x + 1)^2}$,

$$y'' = -\frac{12x(2x^3 - 1)}{(x+1)^3(x^2 - x + 1)^3}$$

Example 4.4.21. Sketch the graph $y = x^{5/3} - 5x^{2/3}$, $y' = \frac{5(x-2)}{3x^{1/3}}$, $y'' = \frac{10(x+1)}{9x^{4/3}}$

Example 4.4.22. Sketch the graph of $y = \frac{x^3 - x}{x^2 + 3x + 2}$. Include domain, asymptotes and intercepts.

Homework: 4.4 p. 287 # 1-14, 15, 19, 23, 27, 33, 39, 43, 83 work e-grade practice at least 2 times.