5.1. The Constant e and Continuous Compound Interest

Definition 5.1.1. An \qquad is a function of the form $f(x)=a^{x}$ where a is a real number with $a>0$ and $a \neq 0$.

Definition 5.1.2. The number e is defined by

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

equivalently

$$
e=\lim _{s \rightarrow 0}(1+s)^{1 / s}
$$

e is an irrational number and is approximately 2.718

Logarithmic Functions

Definition 5.1.3. The logarithm of x with respect to the base a is defined by

$$
y=\log _{a} x \text { if and only if } .
$$

\qquad

Properties of Logarithmic Functions

(1) Special logarithms you should quickly recognize and/or evaluate:
(a) $\log _{a} 1=$
(b) $\log _{a} a=$
(c) $\log x=$
(d) $\ln x=$
(2) Since $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are one-to-one:
(a) $a^{u}=a^{v}$ if and only if \qquad
(b) $\log _{a} u=\log _{a} v$ if and only if \qquad
(3) Since $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are inverses of each other:
(a) $\log _{a} a^{u}=$
(b) $a^{\log _{a} u}=$

Example 5.1.1. Evaluate $e^{\ln 4+\ln 3}$
(4) Operations:
(a) $\log _{a}(m n)=$
(b) $\log _{a}(m / n)=$
(c) $\log _{a}\left(m^{n}\right)=$
(5) Change of base formula: If $b>0$ and $b \neq 0$, then $\log _{a} x=$

In particular, $\log _{a} x=$
(6) $f(x)=\log _{a} x$ is only defined for
(7) The graphs of exponents and logarithms.

Example 5.1.2. For the following $x>0, x \neq 1, y>0$ and $y \neq 1$. True or false?
(a) $\log _{x} 1=0$
(b) $\log x y=\log x \cdot \log y$
(c) $\log _{y} x=\frac{\log y}{\log x}$
(d) $\log \frac{x}{y}=\frac{\log x}{\log y}$
(e) $\log _{5} 5^{-3}=-3$
(f) $\log _{-5}(-5)^{3}=3$
(g) $\ln x \rightarrow \infty$ as $x \rightarrow \infty$
(h) $\ln (-a)$ is defined
(i) $\ln e^{x}=1$

Interest Compounded n times per year

The \qquad , A, is amount in account at the end of given time period of an account.

The \qquad or \qquad , P, is the amount initially deposited.

The \qquad or \qquad ,
r, is the rate for the full year in decimal form.
n is the number of times per year the account is \qquad , i.e. the number of times per year the interest is calculated and added to the account.
t is the number of years the account is held.
FORMULA for A :

Example 5.1.3. Find the amount that results from $\$ 350$ invested at 12% compounded quarterly after a period of 9 years.
(1) $350\left(1+\frac{0.12}{4}\right)^{36}$
(2) $\frac{350}{\left(1+\frac{0.12}{4}\right)^{36}}$
(3) $350\left(1+\frac{0.12}{4}\right)^{9}$
(4) $\frac{350}{\left(1+\frac{0.12}{4}\right)^{9}}$

Interest Continuously Compounded

An account that is \qquad is the value the previous formula approaches when $n \rightarrow \infty$.

FORMULA for A :

Example 5.1.4. If $\$ 4,765$ is invested at 9.8% compounded continuously, what is the amount in 5 years?
(1) $\frac{4765}{e^{0.49}}$
(2) $4765 e^{4.9}$
(3) $4765 e^{0.49}$
(4) $\frac{4765}{e^{4.9}}$
(5) none of these

Example 5.1.5. What continuously compounded interest rate will double an investment in 8 years?
(1) $\ln \frac{1}{4}$
(2) $\ln 4$
(3) $\frac{\ln 2}{8}$
(4) $\frac{\ln 8}{2}$
(5) none of these

Example 5.1.6. What interest rate, compounded continuously, will take an investment of $\$ 10,000$ to $\$ 40,000$ in 5 years?

Example 5.1.7. How long will it take $\$ 85,000$ to grow to $\$ 100,000$ at 7% annual interest compounded continuously?

Homework: 5.1 p. $320 \# 17,19,27$ work e-grade practice at least 2 times.

