Definition 5.1.1. An ______ is a function of the form $f(x) = a^x$ where a is a real number with a > 0 and $a \neq 0$.

Definition 5.1.2. The number *e* is defined by

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

equivalently

$$e = \lim_{s \to 0} (1+s)^{1/s}$$

e is an irrational number and is approximately 2.718

Logarithmic Functions

Definition 5.1.3. The logarithm of x with respect to the base a is defined by

 $y = \log_a x$ if and only if _____

Properties of Logarithmic Functions

- (1) Special logarithms you should quickly recognize and/or evaluate:
 - (a) $\log_a 1 =$
 - (b) $\log_a a =$
 - (c) $\log x =$
 - (d) $\ln x =$

(2) Since $f(x) = a^x$ and $g(x) = \log_a x$ are one-to-one:

- (a) $a^u = a^v$ if and only if _____
- (b) $\log_a u = \log_a v$ if and only if _____

- (3) Since $f(x) = a^x$ and $g(x) = \log_a x$ are inverses of each other:
 - (a) $\log_a a^u =$
 - (b) $a^{\log_a u} =$

Example 5.1.1. Evaluate $e^{\ln 4 + \ln 3}$

(4) Operations:

(a)
$$\log_a(mn) =$$

(b) $\log_a(m/n) =$

(c)
$$\log_a(m^n) =$$

(5) Change of base formula: If b > 0 and $b \neq 0$, then $\log_a x =$

In particular, $\log_a x =$

- (6) $f(x) = \log_a x$ is only defined for
- (7) The graphs of exponents and logarithms.

Example 5.1.2. For the following x > 0, $x \neq 1$, y > 0 and $y \neq 1$. True or false?

 $(a) \log_x 1 = 0$

(b)
$$\log xy = \log x \cdot \log y$$

(c)
$$\log_y x = \frac{\log y}{\log x}$$

$$(d)\,\log\frac{x}{y} = \frac{\log x}{\log y}$$

$$(e) \, \log_5 5^{-3} = -3$$

$$(f) \log_{-5}(-5)^3 = 3$$

- (g) $\ln x \to \infty$ as $x \to \infty$
- (h) $\ln(-a)$ is defined
- (i) $\ln e^x = 1$

Section 5.1

Interest Compounded n times per year

The given time period of an account.	$\underline{}$, A , is amount in accoun	t at the end of	
The	or	, <i>P</i> , is	
the amount initially deposited.			
The			,
r, is the rate for the full year in decimal for	m.		
n is the number of times per year the action of times per year the interest is			
the number of times per year the interest is	calculated and added to t	ne account.	

t is the number of years the account is held.

FORMULA for A:

Example 5.1.3. Find the amount that results from \$350 invested at 12% compounded quarterly after a period of 9 years.

(1)
$$350\left(1+\frac{0.12}{4}\right)^{36}$$

$$(2) \ \frac{350}{\left(1+\frac{0.12}{4}\right)^{36}}$$

(3)
$$350\left(1+\frac{0.12}{4}\right)^9$$

$$(4) \ \frac{350}{\left(1+\frac{0.12}{4}\right)^9}$$

Interest Continuously Compounded

An account that is ______ is the value the previous formula approaches when $n \to \infty$.

FORMULA for A:

Example 5.1.4. If \$4,765 is invested at 9.8% compounded continuously, what is the amount in 5 years?

- $(1) \frac{4765}{e^{0.49}}$
- (2) $4765e^{4.9}$
- (3) 4765 $e^{0.49}$
- $(4) \frac{4765}{e^{4.9}}$
- (5) none of these

Example 5.1.5. What continuously compounded interest rate will double an investment in 8 years?

- (1) $\ln \frac{1}{4}$
- $(2) \ln 4$
- $(3) \frac{\ln 2}{8}$
- $(4) \frac{\ln 8}{2}$
- (5) none of these

Example 5.1.6. What interest rate, compounded continuously, will take an investment of \$10,000 to \$40,000 in 5 years?

Example 5.1.7. *How long will it take* \$85,000 *to grow to* \$100,000 *at* 7% *annual interest compounded continuously?*

Homework: 5.1 p. 320 # 17, 19, 27 work e-grade practice at least 2 times.