5.2. Derivatives of Logarithms and Exponential Functions

Algebra Review

(1) Definition of the logarithm: $\log _{a} x=y$ iff
(2) Change of Base Formula: $\log _{a} u=$
(3) Exponential Formula: $u^{w}=$

Calculus Formulas

(1) $\frac{d}{d x}\left(e^{x}\right)=$
(2) $\frac{d}{d x}(\ln x)=$

Remark 5.2.1. The domain of $f(x)=\ln x$ is $x>0$, so the domain of $f^{\prime}(x)$ is
(3) $\frac{d}{d x}\left(\log _{a} x\right)=$
(4) $\frac{d}{d x}\left(a^{x}\right)=$

Examples

Example 5.2.1. If $f(x)=2 e^{x}+5 \ln x$, find $f^{\prime}(x)$

Example 5.2.2. Find the derivative of $y=e^{3 x^{2}}+\ln \left(4 x^{5}\right)$

Example 5.2.3. If $f(x)=x^{e}+e^{x}$, find $f^{\prime}(x)$

Example 5.2.4. If $f(x)=e^{2}+\ln 2$, find $f^{\prime}(x)$

Example 5.2.5. If $f(x)=2 x^{3}-e^{7}-5 x^{c}+4 e^{x}$, find $f^{\prime}(x)$

Example 5.2.6. If $f(x)=-4 \ln x-\ln 6+4 x^{5}$, then $f^{\prime}(x)$ equals
(1) $-\frac{4}{x}-\frac{1}{6}+20 x^{4}$
(2) $-\frac{1}{4 x}-\frac{1}{6}+20 x^{4}$
(3) $-\frac{x}{4}+20 x^{4}$
(4) $-\frac{4}{x}+20 x^{4}$
(5) none of these

Example 5.2.7. If $f(x)=x^{10} \ln x$, then $f^{\prime}(x)$ equals

Example 5.2.8. Find the derivative of $y=e^{2 x} \ln \left(x^{3}\right)$

Example 5.2.9. Find the derivative of $f(x)=\frac{e^{x}}{3 x-5 x^{2}}$

Example 5.2.10. Find the equation of the tangent line to the graph of $y=4 \ln x$ when $x=3$.

Example 5.2.11. Select ALL the correct choices regarding the absolute maximum of $f(x)=3 x-2 x \ln x$ on $(0, \infty)$.
(1) \max at $x=e^{\frac{1}{2}}$
(2) \max of $2 e^{\frac{1}{2}}$
(3) \max at $x=2 e^{\frac{1}{2}}$
(4) \max of $e^{\frac{1}{2}}$
(5) there is no absolute max

Example 5.2.12. Select ALL the correct choices for $f(x)=(x-7) e^{x}$.
(1) $f(x)$ is increasing on $(5, \infty)$
(2) $f(x)$ is decreasing on $(6, \infty)$
(3) the graph of $f(x)$ is concave up on $(6, \infty)$
(4) the graph of $f(x)$ has an inflection point at $x=5$
(5) $f(x)$ has an absolute max at $x=6$
(6) $f(x)$ has an absolute min at $x=5$

Example 5.2.13. The demand for souvenir T-shirts sold by a nendor at the Civic Center is given approximately by $p=15-4 \ln x, 12 \leq x \leq 40$, where x is the number of T-shirts (in thousands) that can be sold at a concert at a price $\$ p$. If the wholesale cost of the T-shirts is $\$ 5$ each, find the profit function, $w(x)$ (in thousands of dollars).
(1) $w(x)=15 x-4 x \ln x-5$
(2) $w(x)=10 x-4 \ln x^{2}$
(3) $w(x)=10 x-4 x \ln x$
(4) $w(x)=15 x-4 x \ln x$
(5) none of these

Example 5.2.14. Find the maximum profit in the previous problem.

Homework: 5.2 p. $330 \# 3,7,13,19,29,33,35,43,63$ work e-grade practice at least 2 times.

