5.2. Derivatives of Logarithms and Exponential Functions

Algebra Review

(1) Definition of the logarithm: $\log_a x = y$ iff

(2) Change of Base Formula: $\log_a u =$

(3) Exponential Formula: $u^w =$

Calculus Formulas

(1)
$$\frac{d}{dx}(e^x) =$$

(2)
$$\frac{d}{dx}(\ln x) =$$

Remark 5.2.1. The domain of $f(x) = \ln x$ is x > 0, so the domain of f'(x) is

(3)
$$\frac{d}{dx}(\log_a x) =$$

$$(4) \ \frac{d}{dx}(a^x) =$$

Examples

Example 5.2.1. If $f(x) = 2e^x + 5 \ln x$, find f'(x)

Example 5.2.2. Find the derivative of $y = e^{3x^2} + \ln(4x^5)$

Example 5.2.3. If $f(x) = x^{e} + e^{x}$, find f'(x)

Example 5.2.4. If $f(x) = e^2 + \ln 2$, find f'(x)

Example 5.2.5. If $f(x) = 2x^3 - e^7 - 5x^c + 4e^x$, find f'(x)

Example 5.2.6. If $f(x) = -4 \ln x - \ln 6 + 4x^5$, then f'(x) equals

 $(1) - \frac{4}{x} - \frac{1}{6} + 20x^{4}$ $(2) - \frac{1}{4x} - \frac{1}{6} + 20x^{4}$ $(3) - \frac{x}{4} + 20x^{4}$ $(4) - \frac{4}{x} + 20x^{4}$ (5) none of these **Example 5.2.7.** If $f(x) = x^{10} \ln x$, then f'(x) equals

Example 5.2.8. Find the derivative of $y = e^{2x} \ln(x^3)$

Example 5.2.9. Find the derivative of $f(x) = \frac{e^x}{3x - 5x^2}$

Example 5.2.10. Find the equation of the tangent line to the graph of $y = 4 \ln x$ when x = 3.

Example 5.2.11. Select ALL the correct choices regarding the absolute maximum of $f(x) = 3x - 2x \ln x$ on $(0, \infty)$.

- (1) max at $x = e^{\frac{1}{2}}$
- (2) max of $2e^{\frac{1}{2}}$
- (3) max at $x = 2e^{\frac{1}{2}}$
- (4) max of $e^{\frac{1}{2}}$
- (5) there is no absolute max

Section 5.2

Example 5.2.12. Select ALL the correct choices for $f(x) = (x - 7)e^x$.

(1) f(x) is increasing on (5,∞)
(2) f(x) is decreasing on (6,∞)
(3) the graph of f(x) is concave up on (6,∞)
(4) the graph of f(x) has an inflection point at x = 5
(5) f(x) has an absolute max at x = 6
(6) f(x) has an absolute min at x = 5

Example 5.2.13. The demand for souvenir T-shirts sold by a nendor at the Civic Center is given approximately by $p = 15 - 4 \ln x$, $12 \le x \le 40$, where x is the number of T-shirts (in thousands) that can be sold at a concert at a price \$p. If the wholesale cost of the T-shirts is \$5 each, find the profit function, w(x) (in thousands of dollars).

(1) $w(x) = 15x - 4x \ln x - 5$ (2) $w(x) = 10x - 4 \ln x^2$ (3) $w(x) = 10x - 4x \ln x$ (4) $w(x) = 15x - 4x \ln x$ (5) none of these

Example 5.2.14. Find the maximum profit in the previous problem.

Homework: 5.2 p. 330 # 3, 7, 13, 19, 29, 33, 35, 43, 63 work e-grade practice at least 2 times.