6.1. Antiderivatives and Indefinite Integrals

- (1) A function F is called an ______ of f on an interval I of F'(x) = f(x) for al $x \in I$.
- (2) Theorem: If F is an antiderivative of f on an interval I and C is any constant, then F(x) + C also defines an antiderivative of f on I.
- (4) Notation: If F(x) is an antiderivative of f(x) then we write

Remark 6.1.1. In the e-grade "fill in the formula entry box", the plus C is added for you. If you type in "+C" your answer will be marked incorrect – do NOT put "+C"

Rules for the Most General Antiderivative of f

(1) $\int k \, dx =$ (where k is a constant)

- (2) $\int f(x) \pm g(x) \, dx =$
- (3) $\int kg(x) dx =$ (where k is a constant)
- (4) $\int x^n dx =$ (for $n \neq -1$)
- (5) $\int x^{-1} dx =$
- (6) $\int e^x dx =$

Examples

Example 6.1.1. Evaluate
$$\int -6 \, dx$$
.

Example 6.1.2. Evaluate $\int dx$.

Example 6.1.3. Evaluate
$$\int -4x^7 dx$$
.

Example 6.1.4. Evaluate $\int (3 + 2u^{-4} - \sqrt{u}) \, du$.

Example 6.1.5. Evaluate
$$\int \frac{-4}{z} dz$$
.

Example 6.1.6. Evaluate
$$\int t + 12e^t dt$$
.

Example 6.1.7. Find y if
$$\frac{dy}{dx} = -6x^{-2} + x^{-1}$$
.

Example 6.1.8. Find y so that y(1) = -4 and $\frac{dy}{dx} = -6x^{-2} + x^{-1}$.

Section 6.1

Example 6.1.9. Find w if $\frac{dw}{dv} = -4v^{-1} + 5v^{-2} - e^v$.

Example 6.1.10. Evaluate $\int \frac{x^3 + 4x^2 - 3x}{x^3} dz$.

Homework: 6.1 p. 373 # 1, 11, 13, 15, 17, 27, 29, 39, 45, 51, 59, 67, 71, 83 work e-grade practice at least 2 times.