6.1. Antiderivatives and Indefinite Integrals

(1) A function F is called an \qquad of f on an interval I of $F^{\prime}(x)=f(x)$ for al $x \in I$.
(2) Theorem: If F is an antiderivative of f on an interval I and C is any constant, then $F(x)+C$ also defines an antiderivative of f on I.
(3) If F is an antiderivative of f, then we describe the antiderivative of a function in the most general terms by using the notation \qquad to represent all possible antiderivatives of f.
(4) Notation: If $F(x)$ is an antiderivative of $f(x)$ then we write

Remark 6.1.1. In the e-grade "fill in the formula entry box", the plus C is added for you. If you type in " $+C$ " your answer will be marked incorrect - do NOT put " $+C$ "

Rules for the Most General Antiderivative of f
(1) $\int k d x=$
(where k is a constant)
(2) $\int f(x) \pm g(x) d x=$
(3) $\int k g(x) d x=$
(4) $\int x^{n} d x=$
(where k is a constant)
(5) $\int x^{-1} d x=$
(6) $\int e^{x} d x=$

Examples

Example 6.1.1. Evaluate $\int-6 d x$.

Example 6.1.2. Evaluate $\int d x$.

Example 6.1.3. Evaluate $\int-4 x^{7} d x$.

Example 6.1.4. Evaluate $\int\left(3+2 u^{-4}-\sqrt{u}\right) d u$.

Example 6.1.5. Evaluate $\int \frac{-4}{z} d z$.

Example 6.1.6. Evaluate $\int t+12 e^{t} d t$.

Example 6.1.7. Find y if $\frac{d y}{d x}=-6 x^{-2}+x^{-1}$.

Example 6.1.8. Find y so that $y(1)=-4$ and $\frac{d y}{d x}=-6 x^{-2}+x^{-1}$.

Example 6.1.9. Find w if $\frac{d w}{d v}=-4 v^{-1}+5 v^{-2}-e^{v}$.

Example 6.1.10. Evaluate $\int \frac{x^{3}+4 x^{2}-3 x}{x^{3}} d z$.

Homework: 6.1 p. $373 \# 1,11,13,15,17,27,29,39,45,51,59,67,71,83$ work e-grade practice at least 2 times.

