6.5. Definite Integral; Fundamental Theorem of Calculus

We assume for this section that f is a continuous function on the interval $[a, b]$ and n is a positive integer.
(1) We may subdivide the interval $[a, b]$ into n subintervals. Denote the endpoints of the subintervals $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ where $a=x_{0}, b=x_{n}$ and $x_{i-1}<x_{i}$. This is called a \qquad of the interval $[a, b]$.
(2) It is most common to choose the subintervals to all have the same width.
(3) $\Delta x_{i}=$ \qquad $=$
(4) It is most common to choose the subintervals to all have the same width, so
(5) x_{i}^{*} denotes a chosen number in the interval $\left[x_{i-1}, x_{i}\right]$.
(6) $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$ is a \qquad
(7) If $x_{i}^{*}=x_{i-1}$, then the Riemann sum is called the \qquad Riemann sum.
(8) If $x_{i}^{*}=x_{i}$, then the Riemann sum is called the \qquad Riemann sum.
(9) If $x_{i}^{*}=\frac{x_{i}-x_{i-1}}{2}$, then the Riemann sum is called the Riemann sum.
(10) If x_{i}^{*} is where the maximum occurs on $\left[x_{i-1}, x_{i}\right]$, then the Riemann sum is called the \qquad Riemann sum.
(11) If x_{i}^{*} is where the minimum occurs on $\left[x_{i-1}, x_{i}\right]$, then the Riemann sum is called the \qquad Riemann sum.

Graphs

Example 6.5.1. Left rule on $[0,10]$ with 5 equal subintervals.

Example 6.5.2. Midpoint rule on $[0,10]$ with 5 equal subintervals.

Example 6.5.3. Use the rectangle (mid-point) rule, with $n=2$ to approximate $\int_{-4}^{2}\left(x-2 x^{2}\right) d x$

Integrals

(1) The definite integral of f from a to b is defined by

Note that when the subintervals are chosen so the width of each is $\frac{b-a}{n}$, then this is equivalent to

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

(a) \int is called the
(b) a and b are the \qquad with b being the
\qquad while a is the \qquad
(c) $f(x)$ is the
(d) the process of finding the integral is \qquad

Properties

(1) If \qquad then $\int_{a}^{b} f(x) d x$ is the exact area between the curve and the x axis over the interval $[a, b]$.
(2) If \qquad then $\int_{a}^{b} f(x) d x$ is -1 times the exact area between the curve and the x axis over the interval $[a, b]$.
(3) $\int_{a}^{b} f(x) d x=$
(4) $\int_{a}^{a} f(x) d x=$
(5) $\int_{a}^{b} c d x=$
(6) $\int_{a}^{b}[f(x)+g(x)] d x=$
(7) $\int_{a}^{b} c f(x) d x=$
(8) $\int_{a}^{b}[f(x)-g(x)] d x=$
(9) $\int_{a}^{c} f(x) d x=$

Examples

Example 6.5.4. Use the graph to find the following integrals.

(1) $\int_{0}^{4} f(x) d x$
(2) $\int_{14}^{16} f(x) d x$
(3) $\int_{6}^{14} f(x) d x$
(4) $\int_{6}^{4} f(x) d x$

Example 6.5.5. Select ALL correct choices for the following graph with Area $A=6$, Area $B=15$, Area $C=3$.

(1) none of these
(2) $\int_{b}^{c} f(x) d x=3$
(3) $\int_{a}^{c} f(x) d x=-6$
(4) $\int_{b}^{0} \frac{f(x) d x}{5}=-3$
(5) $\int_{b}^{a} f(x) d x=9$

Example 6.5.6. Given $\int_{3}^{5} f(x) d x=5$ and $\int_{1}^{5} f(x) d x=7$ find $\int_{1}^{3} f(x) d x$.

The Fundamental Theorem of Calculus

Theorem 6.5.1 (FTC). Assume f is continuous on $[a, b]$.
(1) Then the function g defined by
is differentiable on (a, b) and $g^{\prime}(x)=f(x)$.
(2) If $F(x)$ is an antiderivative of f then

Definition 6.5.1. The most general antiderivative of $f(x)$ is also called the
\qquad

Thus if $F(x)$ is an antiderivative of f, then

Examples

Example 6.5.7. Evaluate $\int_{-3}^{4}\left(3 x^{2}-4 x\right) d x$

Example 6.5.8. Integrate $\int_{0}^{4} 3+\sqrt{x} d x$

Example 6.5.9. Integrate $\int_{-2}^{4} e^{-5 x} d x$

Example 6.5.10. Evaluate $\int_{-3}^{0} \frac{x}{16-x^{2}} d x$

Example 6.5.11. Evaluate $\int_{3}^{0} x \sqrt{x^{2}+16} d x$

Example 6.5.12. An oil well starts out producing oil at a rate of 60,000 barrels per year, and the production rate decreases by 4,000 barrels per year. Thus, if $P(t)$ is the total production (in thousands of barrels) in t years, the rate of change of production is $P^{\prime}(t)=60-4 t, 0 \leq t \leq 15$. Find the total production of oil (in thousands of barrels) over the first 7 years of operation.
(1) 32
(2) 42
(3) 322
(4) 420

Average Function Value

The Average Value of f over the interval $[a, b]$ is defined as

Examples

Example 6.5.13. Find the average value of $g(t)=-6 t^{2}+4 t$ over the interval $[-2,3]$.

Example 6.5.14. Suppose the inventory, I, of a certain item, t months after the first of the year, is $I(t)=3+18 t-3 t^{2}, 0 \leq t \leq 12$. What is the average inventory for the first 6 months of the year?

Homework: 6.5 p. $430 \# 1,3,5,13,17,21,23,33,39,47 \mathrm{a}, 51 \mathrm{a}, 53$ first part, 79, 83, 85,103 , work e-grade practice at least 2 times.

