7.1. Area Between Curves

Recall the properties given in section 6.5:
(1) If $f(x) \geq 0$ on $[a, b]$ then $\int_{a}^{b} f(x) d x$ is the exact area between the curve and the x axis over the interval $[a, b]$.
(2) If $f(x) \leq 0$ on $[a, b]$ then $\int_{a}^{b} f(x) d x$ is -1 times the exact area between the curve and the x axis over the interval $[a, b]$.
(3) $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$

So...

If $f(x) \geq 0$ on $[a, b]$ and $f(x) \leq 0$ on $[b, c]$, the area between $f(x)$ and the x-axis is

Theorem 7.1.1 (Area between two curves). If $f(x) \geq g(x)$ for all x in $[a, b]$, then the area between the graphs of f and g over the interval $[a, b]$ is

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x=\int_{a}^{b} f(x)-g(x) d x
$$

In general, the area between the graphs of f and g over the interval $[a, b]$ is

Examples

Example 7.1.1. Find the area bounded by the graphs $y=e^{-x}$ and $y=0$ for $-1 \leq$ $x \leq 0$.

Example 7.1.2. Find the area between the graphs $y=-6 x-2$ and $y=10$ for $-2 \leq x \leq 2$.

Example 7.1.3. Find the area between the graphs $y=-6 x-2$ and $y=10$ for $-4 \leq x \leq 0$.

Example 7.1.4. Find the area between the graphs $y=-4 x^{2}-8 x+5$ and $y=$ $3 x^{2}-8 x-2$.

Example 7.1.5. $y=1+\sqrt{x}$ and $y=\frac{3+x}{3}$

Homework: 7.1 p. $454 \# 3,11,13,15,19,23,33,39,47,67$ work e-grade practice at least 2 times.

