7.2. Applications in Business and Economics

Definition 7.2.1. Suppose x represents a possible numerical outcome of an experiment and that $[c, d]$ represents an interval of possible outcomes of the experiment. A , $y=f(x)$, is a function that helps us determine the probability that an outcome of x will occur in the interval $[c, d]$ This functions must satisfy the following properties:
(1)
(3) When $[c, d]$ is an interval of real numbers then the probability of outcome x during the interval $[c, d]$ is

Example 7.2.1. The shelf life (in years) of a certain brand of clock radio is a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{3}{(x+3)^{2}} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

What is the probability that a randomly selected clock radio has a shelf life from 2 to 6 years?

Example 7.2.2. The shelf life (in years) of a certain brand of clock radio is a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{4}{(x+4)^{2}} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

What is the probability that a randomly selected clock radio has a shelf life of 1 year or less?

Example 7.2.3. A manufacturer guarantees a product for 5 years. The time to failure of that product after it is sold is given by the probability density function

$$
f(t)= \begin{cases}0.03 e^{-0.03 t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where t is time in years. What is the probability that a buyer chosen at random will have a product failure during the warranty period?

Example 7.2.4. The time to failure of a product after it is sold is given by the probability density function

$$
f(t)= \begin{cases}0.15 e^{-0.15 t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where t is time in months. What is the probability that a buyer chosen at random will have a product failure during the second year after purchase?

Income Stream

Definition 7.2.2. In many applications it is assumed that income is received in a rather than in discrete points of time. The rate of change of the continuous income stream is called the \qquad .

Theorem 7.2.1. If $f(t)$ is the rate of flow of a continuous income stream, then the total income produced from the time $t=a$ to $t=b$ is

Example 7.2.5. Find the total income (in thousands of dollars) produced by a vending machine in its first 3 years of operation if the rate of the flow of its continuous income stream is given by $f(t)=6 e^{0.05 t}$, where t is the time in years since the installation of the machine and $f(t)$ is in thousands of dollars.
(1) $120\left(e^{0.15}-e^{0.05}\right)$
(2) $120 e^{0.15}-1$
(3) $120 e^{0.15}$
(4) $120\left(e^{0.15}-1\right)$
(5) none of these

Definition 7.2.3. Suppose an income with a rate of flow $f(t)$ is invested in a continuously compounded account with an interest rate r. The \qquad , $F V$, at the end of T years later is given by

Consumers' and Producers' Surplus

Definition 7.2.4. Suppose $p=D(x)$ is a price-demand equation for a product. Then the \qquad , CS, at a price level of \bar{p}
where \bar{x} is the demand at price \bar{p}.

Definition 7.2.5. Suppose $p=S(x)$ is a supply-supply equation for a product. Then the \qquad , PS, at a price level of \bar{p}
where \bar{x} is the demand at price \bar{p}.

Definition 7.2.6. The point(s) where the price-demand equation and the price-supply
equation intersect is called the \qquad and

Example 7.2.6. The price-demand equation for a produce os $p=D(x)=13-\frac{2}{3} x$. If the equilibrium price is $\$ 7$, what is the consumer's surplus in dollars?

Example 7.2.7. The price-demand equation for a produce os $p=D(x)=\frac{21}{3 x+4}$. If the equilibrium quantity is 1 unit, what is the consumer surplus in dollars?

Example 7.2.8. The price-supply equation for a produce os $p=S(x)=2 x^{2}+x+5$. If the equilibrium price is $\$ 15$, what is the producer's surplus in dollars?

Example 7.2.9. For a certain product, the price-demand and price-supply equations are $p=D(x)=20-3 x^{2}$ and $p=S(x)=3 x+2$ respectively. Find the consumer surplus at the equilibrium price level.
(1) 6
(2) 12
(3) 16
(4) 48
(5) none of these

Homework: 7.2 p. $467 \# 7,11,15,19,37,41,47$ work e-grade practice at least 2 times.

