8.1. Functions of Several Variables

Definition 8.1.1. A
is a function whose input uses two variables that do not depend on each other.

Example 8.1.1. Let $f(x, y)=2 x-4 y^{2}$. Find
(1) $f(-2,3)$
(2) $4 f(-2,3)$

Definition 8.1.2. In the above example, we call x and y the

If we say $z=f(x, y)$, then z is the \qquad (which
depends on x and $y)$. The set of all ordered pairs of real numbers is the \qquad
and the set of all corresponding values for $f(x, y)$ is the \qquad

Example 8.1.2. Find $4 f(-2,3)-3 g(1,-2)$ if $f(x, y)=2 x-4 y^{2}$ and $g(x, y)=$ $3-x^{2} y^{3}$.

Example 8.1.3. Find $A(100,0.04,5,2)$ if $A(P, r, t, n)=P\left(1+\frac{r}{n}\right)^{t n}$.

Example 8.1.4. A company manufactures two types of calculators, A and B. The weekly price-demand equations are

$$
\begin{aligned}
& p=15-2 x+y \\
& q=20+x-2 y
\end{aligned}
$$

where p is the unit price of A, q is the unit price of B, x is the weekly demand for A, and y is the weekly demand for B. Find the weekly revenue function $R(x, y)$ (in thousands of dollars), and evaluate $R(4,3)$

Example 8.1.5. A company manufactures two types of calculators, A and B. The weekly price-demand equations and cost equations are

$$
\begin{aligned}
& p=15-2 x+y \\
& q=20+x-2 y \\
& C(x, y)=20+2 x+y
\end{aligned}
$$

where p is the unit price of A, q is the unit price of B, x is the weekly demand for A, y is the weekly demand for B, and $C(x, y)$ is the cost function. Find the profit function $P(x, y)$ (in thousands of dollars), and evaluate $P(4,3)$
(1) 63
(2) 72
(3) 85
(4) 94

Example 8.1.6. The packaging department of a company has been asked to design a rectangular box with no top and six compartments. Let x, y, z be the dimensions of the box in inches (see figure). Find the total amount of material $M(x, y, z)$ (in square inches) used to construct the box and evaluate $M(4,3,2)$.

Three Dimensional Coordinate System

Definition 8.1.3. The three dimensional coordinate system is formed by three perpendicular lines. We use the \qquad as the usual convention for where to place the positive x-axis, y-axis and z-axis.

Homework: 8.1 p. $497 \# 3,9,15,17,21,39,41$ work e-grade practice at least 2 times.

