8.2. PARTIAL DERIVATIVES

Definition 8.2.1. Let z = f(x, y) be a function of two variables. We define the partial derivative of f with respect to x as

and the partial derivative of f with respect to y as

Remark 8.2.1. Some common notations are

Example 8.2.1. Find $f_x(x,y)$ and $\frac{\partial z}{\partial y}$ if $z = f(x,y) = 5x^3y - 2xy^2 + 7x - 4y + 6$.

Example 8.2.2. Find $f_x(x,y)$ and $f_y(x,y)$ if $z = f(x,y) = xe^y + y \ln x + \frac{x}{y}$.

Section 8.1

Example 8.2.3. Find $f_x(x,y)$ and $f_y(x,y)$ if $z = f(x,y) = e^{2x^2 - xy + y^2}$.

Example 8.2.4. Find $f_x(x, y)$ and $f_y(x, y)$ if $z = f(x, y) = x^2 \ln(y^3 + xy)$.

Example 8.2.5. Find $R_p(p,q)$ and $R_q(p,q)$ if $R(p,q) = 12p - 4q + 4pq - p^4 + q^3$.

Section 8.1

Second-order partial derivatives

Definition 8.2.2. Let z = f(x, y) be a function of two variables. We define the second order partial derivative of f are

(1)

(2)

(3)

(4)

Example 8.2.6. Find $f_{xx}(x,y)$, $\frac{\partial^2 z}{\partial y^2}$, $f_{xy}(x,y)$, and $f_{yx}(x,y)$ if $z = f(x,y) = 5x^3y - 2xy^2 + 7x - 4y + 6$.

Section 8.1

Example 8.2.7. Find $f_{yx}(x, y)$ if $z = f(x, y) = xe^y + y \ln x + \frac{x}{y}$.

Example 8.2.8. Find $f_{xx}(x, y)$ if $z = f(x, y) = e^{2x^2 - xy + y^2}$.

Example 8.2.9. Find $f_{xy}(x, y)$ if $z = f(x, y) = x^2 \ln(y^3 + xy)$.

Example 8.2.10. Find $R_{qp}(p,q)$ and $R_{qq}(p,q)$ if $R(p,q) = 12p - 4q + 4pq - p^4 + q^3$.

Applications

Example 8.2.11. A company manufactures two types of calculators, A and B. The weekly price-demand equations and cost equations are

p = 15 - 2x + yq = 20 + x - 2yC(x, y) = 20 - 2x + y

where p is the unit price of A, q is the unit price of B, x is the weekly demand for A, y is the weekly demand for B, and C(x, y) is the cost function.

(1) Find the profit function P(x, y) (in thousands of dollars).

(2) Find $P_x(2,4)$

Remark 8.2.2. In the above example, the solution to part (2) tells us that a production

level of x = 2 and y = 4, a unit increase in _____ while holding _____ fixed at

_____ will increase/decrease the total profit be approximately ______ thousands of dollars.

Example 8.2.12. Let C(x, y) be the cost function of x units of A and y units of B. In marginal analysis, what is the mathematical interpretation of $C_y(7, 12) = -\$40$?

- (1) At a production level of x = 7 and y = 12, a unit increase in x while holding y fixed at 12 will decrease the total cost be approximately \$40.
- (2) At a production level of x = 7 and y = 12, a unit increase in y while holding x fixed at 7 will decrease the marginal cost be approximately \$40.
- (3) At a production level of x = 7 and y = 12, a unit decrease in y while holding x fixed at 7 will decrease the marginal cost be approximately \$30.
- (4) At a production level of x = 7 and y = 12, a unit increase in y while holding x fixed at 7 will decrease the total cost be approximately \$40.
- (5) At a production level of x = 7 and y = 12, a unit decrease in y while holding x fixed at 12 will decrease the total cost be approximately \$40.

Homework: 8.2 p. 506 # 3, 7, 9, 13, 17, 21, 23, 25, 29, 31, 37, 47, 49, 63, 67 work e-grade practice at least 2 times.