8.2. Partial Derivatives

Definition 8.2.1. Let $z=f(x, y)$ be a function of two variables. We define the partial derivative of f with respect to x as
and the partial derivative of f with respect to y as

Remark 8.2.1. Some common notations are

Example 8.2.1. Find $f_{x}(x, y)$ and $\frac{\partial z}{\partial y}$ if $z=f(x, y)=5 x^{3} y-2 x y^{2}+7 x-4 y+6$.

Example 8.2.2. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ if $z=f(x, y)=x e^{y}+y \ln x+\frac{x}{y}$.

Example 8.2.3. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ if $z=f(x, y)=e^{2 x^{2}-x y+y^{2}}$.

Example 8.2.4. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ if $z=f(x, y)=x^{2} \ln \left(y^{3}+x y\right)$.

Example 8.2.5. Find $R_{p}(p, q)$ and $R_{q}(p, q)$ if $R(p, q)=12 p-4 q+4 p q-p^{4}+q^{3}$.

Second-order partial derivatives

Definition 8.2.2. Let $z=f(x, y)$ be a function of two variables. We define the second order partial derivative of f are
(1)
(2)
(3)
(4)

Example 8.2.6. Find $f_{x x}(x, y), \frac{\partial^{2} z}{\partial y^{2}}, f_{x y}(x, y)$, and $f_{y x}(x, y)$ if $z=f(x, y)=5 x^{3} y-$ $2 x y^{2}+7 x-4 y+6$.

Example 8.2.7. Find $f_{y x}(x, y)$ if $z=f(x, y)=x e^{y}+y \ln x+\frac{x}{y}$.

Example 8.2.8. Find $f_{x x}(x, y)$ if $z=f(x, y)=e^{2 x^{2}-x y+y^{2}}$.

Example 8.2.9. Find $f_{x y}(x, y)$ if $z=f(x, y)=x^{2} \ln \left(y^{3}+x y\right)$.

Example 8.2.10. Find $R_{q p}(p, q)$ and $R_{q q}(p, q)$ if $R(p, q)=12 p-4 q+4 p q-p^{4}+q^{3}$.

Applications

Example 8.2.11. A company manufactures two types of calculators, A and B. The weekly price-demand equations and cost equations are

$$
\begin{aligned}
& p=15-2 x+y \\
& q=20+x-2 y \\
& C(x, y)=20-2 x+y
\end{aligned}
$$

where p is the unit price of A, q is the unit price of B, x is the weekly demand for A, y is the weekly demand for B, and $C(x, y)$ is the cost function.
(1) Find the profit function $P(x, y)$ (in thousands of dollars).
(2) Find $P_{x}(2,4)$

Remark 8.2.2. In the above example, the solution to part (2) tells us that a production
level of $x=2$ and $y=4$, a unit increase in \qquad while holding \qquad fixed at
\qquad will increase/decrease the total profit be approximately \qquad thousands of dollars.

Example 8.2.12. Let $C(x, y)$ be the cost function of x units of A and y units of B. In marginal analysis, what is the mathematical interpretation of $C_{y}(7,12)=-\$ 40$?
(1) At a production level of $x=7$ and $y=12$, a unit increase in x while holding y fixed at 12 will decrease the total cost be approximately $\$ 40$.
(2) At a production level of $x=7$ and $y=12$, a unit increase in y while holding x fixed at 7 will decrease the marginal cost be approximately $\$ 40$.
(3) At a production level of $x=7$ and $y=12$, a unit decrease in y while holding x fixed at 7 will decrease the marginal cost be approximately $\$ 30$.
(4) At a production level of $x=7$ and $y=12$, a unit increase in y while holding x fixed at 7 will decrease the total cost be approximately $\$ 40$.
(5) At a production level of $x=7$ and $y=12$, a unit decrease in y while holding x fixed at 12 will decrease the total cost be approximately $\$ 40$.

Homework: 8.2 p. $506 \# 3,7,9,13,17,21,23,25,29,31,37,47,49,63,67$ work e-grade practice at least 2 times.

