8.3. MAXIMA MINIMA

Theorem 8.3.1. Let z = f(x, y) be a function of two variables. GIVEN:

- (1) $f_x(a,b) = 0$ and $f_y(a,b) = 0$ ((a,b) is a ______ for f)
- (2) All second partial derivative exist around the point (a, b).
- (3) $A = f_{xx}(a, b), B = f_{xy}(a, b), C = f_{yy}(a, b)$

THEN:

case 1: If
$$AC-B^2 > 0$$
 and $A < 0$, then $f(a, b)$ is a ______
case 2: If $AC-B^2 > 0$ and $A > 0$, then $f(a, b)$ is a ______
case 3: If $AC-B^2 < 0$, then f has a ______ at (a, b) .
case 4: If $AC-B^2 = 0$ the test fails –

Examples

Example 8.3.1. Find all local extrema and saddle points of $f(x, y) = 2x^2 - 2xy + y^2 - 4x + 6y - 3$

Example 8.3.2. Find all local extrema and saddle points of f(x, y) = 8x + 6y - 17

Example 8.3.3. Find all local extrema and saddle points of $f(x, y) = -2x^2 + 4xy - 3y^2 - 4x + 2y - 3$

Example 8.3.4. Find all local extrema and saddle points of f(x, y) = xy + x - y

Example 8.3.5. Find all local extrema and saddle points of $f(x, y) = 3y^2 - 2x^3 - 24x - 3y - 21$

Example 8.3.6. Find all local extrema and saddle points of $f(x, y) = 2x^3 - 2xy + 2y$

Example 8.3.7. Find all local extrema and saddle points of $f(x, y) = -2x^2 + 4xy - 3y^2 - 4x + 2y - 3$

Example 8.3.8. The cost function, C (in hundreds of dollars), of producing two products is $C(x,y) = 2x^2 + 3y^2 - 4xy + 4x - 8y + 20$, where x is the quantity of product A and y is the quantity of product B.

- (1) How many of each product should be produced to minimize cost.
- (2) Find the minimum cost of producing these products.

Homework: 8.3 p. 516 # 9, 13, 17, 21, 23, 29, 31 work e-grade practice at least 2 times.