2.4. The Derivative

Definition 2.4.1. Recall from 2.1: Given a function $y=f(x)$, a difference quotient is an expression of the form

$$
\frac{f(a+h)-f(a)}{(a+h)-h}
$$

Definition 2.4.2. The average rate of change from $x=a$ to $x=a+h$ is

$$
\frac{f(a+h)-f(a)}{(a+h)-a}=\frac{f(a+h)-f(a)}{h} \quad h \neq 0
$$

Definition 2.4.3. The average rate of change from $x=a$ to $x=b$ is

$$
\frac{f(b)-f(a)}{b-a}
$$

Remark 2.4.1. All of the following concepts are found using the average rate of change:
(1) the slope of a secant line,
(2) average velocity of a particle,
(3) average acceleration of a particle using velocity

Example 2.4.1. Find the indicated quantities for $f(x)=16 x^{2}$.
A) The average rate of change from $x=2$ to $x=6$.
B) The average rate of change from $x=2$ to $x=2+h$.

Example 2.4.2. If $f(x)=3-2 x^{2}$, find $\frac{f(2)-f(-5)}{2-(-5)}$.

Example 2.4.3. Given $f(x)=2-2 x-x^{2}$, find $\frac{f(-1+h)-f(-1)}{h}, h \neq 0$.

Example 2.4.4. Given $f(x)=2-2 x-x^{2}$, find $\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}$.

Definition of the Derivative

Example 2.4.5. Refer to the following graph of $f(x)=x^{2}+x$ to answer the problems below.

(1) Find the slope of the secant line adjoining the points at $x=1$ and $x=3$.
(2) What is the slope of $f(x)$ at $x=1$?

Definition 2.4.4. The line \qquad to a curve at a point $x=a$ is the line the "best approximates" the curve at $x=a t$. The slope of this line at $x=a$ is the slope of the curve at $x=a$. This slope is also called the instantaneous rate of change. The formal definition is given next.

Definition 2.4.5. Let $y=f(x)$ be a function. The derivative of f with respect to x is

$$
f^{\prime}(x)=y^{\prime}=\frac{d}{d x} f(x)=\frac{d y}{d x}=D f(x)=D_{x} f(x)=
$$

Remark 2.4.2. All of the following concepts are found using the derivative:
(1) the slope of a tangent line,
(2) (instantaneous) velocity of a particle at a particular time using the position,
(3) (instantaneous) acceleration of a particle at a particular time using velocity,
(4) instantaneous rate of change of a quantity
(5) marginal cost using a cost function
(6) marginal revenue using a revenue function

Example 2.4.6. Find the slope of $f(x)$ from Example 2.4.5 at $x=1$:

Example 2.4.7. Given $f(x)=2-2 x-x^{2}$, find $f^{\prime}(x)$.

Example 2.4.8. Given $f(x)=1 / x$, find $f^{\prime}(x)$. Then find $f^{\prime}(1)$ and $f^{\prime}(2)$.

Example 2.4.9. The total sales of a company (in millions of dollars) t months from now are given by $S(t)=\sqrt{t+6}$. Find $S(10)$ and $S^{\prime}(10)$, and interpret. Use these results to estimate the total sales after 13 months and 14 months.

Determining where $f(x)$ is Nondifferentiable
Definition 2.4.6. We say that $f(x)$ is nondifferentiable at $x=a$ if the derivative of $f(x)$ does not exist at $x=a$. This happens when
(1) the graph of $f(x)$ has a hole, break, or vertical asymptote at $x=a$
(2) the graph of $f(x)$ has a sharp corner at $x=a$
(3) the graph of $f(x)$ has a vertical tangent at $x=a$

(A) Not continuous at $x=a$

(B) Graph has sharp
comer at $x=a$

(C) Vertical tangent at $x=a$

(D) Vertical tangent at $x=a$

(E) Vertical asymptote
at $x=a$

Example 2.4.10. Determine where $f(x)$ is nondifferentiable given its graph below.

