2.4. The Derivative

Definition 2.4.1. Recall from 2.1: Given a function y = f(x), a difference quotient is an expression of the form

$$\frac{f(a+h) - f(a)}{(a+h) - h}$$

Definition 2.4.2. The average rate of change from x = a to x = a + h is

$$\frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h} \quad h \neq 0$$

Definition 2.4.3. The average rate of change from x = a to x = b is

$$\frac{f(b) - f(a)}{b - a}$$

Remark 2.4.1. All of the following concepts are found using the average rate of change:

(1) the slope of a secant line,

(2) average velocity of a particle,

(3) average acceleration of a particle using velocity

Example 2.4.1. Find the indicated quantities for $f(x) = 16x^2$.

A) The average rate of change from x = 2 to x = 6.

B) The average rate of change from x = 2 to x = 2 + h.

Example 2.4.2. If $f(x) = 3 - 2x^2$, find $\frac{f(2) - f(-5)}{2 - (-5)}$.

Example 2.4.3. Given
$$f(x) = 2 - 2x - x^2$$
, find $\frac{f(-1+h) - f(-1)}{h}$, $h \neq 0$.

Example 2.4.4. Given
$$f(x) = 2 - 2x - x^2$$
, find $\lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h}$.

Definition of the Derivative

Example 2.4.5. Refer to the following graph of $f(x) = x^2 + x$ to answer the problems below.

(1) Find the slope of the secant line adjoining the points at x = 1 and x = 3.

(2) What is the slope of f(x) at x = 1?

Definition 2.4.4. The line _______ to a curve at a point x = a is the line the "best approximates" the curve at x = a. The slope of this line at x = a is the slope of the curve at x = a. This slope is also called the **instantaneous rate** of change. The formal definition is given next.

Definition 2.4.5. Let y = f(x) be a function. The derivative of f with respect to x is

$$f'(x) = y' = \frac{d}{dx}f(x) = \frac{dy}{dx} = Df(x) = D_x f(x) =$$

Remark 2.4.2. All of the following concepts are found using the derivative:

- (1) the slope of a tangent line,
- (2) (instantaneous) velocity of a particle at a particular time using the position,
- (3) (instantaneous) acceleration of a particle at a particular time using velocity,
- (4) instantaneous rate of change of a quantity
- (5) marginal cost using a cost function
- (6) marginal revenue using a revenue function

Example 2.4.6. Find the slope of f(x) from Example 2.4.5 at x = 1:

Example 2.4.7. Given $f(x) = 2 - 2x - x^2$, find f'(x).

Example 2.4.8. Given f(x) = 1/x, find f'(x). Then find f'(1) and f'(2).

Example 2.4.9. The total sales of a company (in millions of dollars) t months from now are given by $S(t) = \sqrt{t+6}$. Find S(10) and S'(10), and interpret. Use these results to estimate the total sales after 13 months and 14 months.

Section 2.4

Determining where f(x) is Nondifferentiable

Definition 2.4.6. We say that f(x) is nondifferentiable at x = a if the derivative of f(x) does not exist at x = a. This happens when

- (1) the graph of f(x) has a hole, break, or vertical asymptote at x = a
- (2) the graph of f(x) has a sharp corner at x = a
- (3) the graph of f(x) has a vertical tangent at x = a

Example 2.4.10. Determine where f(x) is nondifferentiable given its graph below.

