4.4. Curve-Sketching Techniques

Graphing Strategy

(1) Find from $y=f(x)$:
(a) Domain: where is f defined? (Do NOT simplify before finding domain)
(b) x-intercepts: set $y=0$ and solve for x
(c) y-intercepts: set $x=0$ and solve for y
(d) Asympotes
(i) Vertical: find a so that $\lim _{x \rightarrow a} f(x)= \pm \infty$.
(ii) Horizontal: find L so that $\lim _{x \rightarrow \pm \infty} f(x)=L$.
(2) Find from $y=f^{\prime}(x)$:
(a) Critical Numbers: where is $f^{\prime}(x)$ equal to 0 or undefined in the domain of $f(x)$.
(b) Horizontal and Vertical Tangents of $f(x)$
(c) Intervals of increase and Interval of decrease of $f(x)$: use the sign of $f^{\prime}(x)$
(d) Local Extrema of $f(x)$
(3) Find from $y=f^{\prime \prime}(x)$:
(a) Intervals of Concave Up and Concave down of $f(x)$: use the sign of $f^{\prime \prime}(x)$
(b) Inflection Points of $f(x)$: where does $f^{\prime \prime}(x)$ change signs?

Examples

Example 4.4.1. Assuming f^{\prime}, $f^{\prime \prime}$ exist, select ALL the correct choices for the graph.

(1) $f^{\prime \prime}(x)>0$ on $(-\infty, b) \cup(d, e) \cup(e, f)$
(2) $f^{\prime \prime}(x)<0$ on $(b, d) \cup(f, \infty)$
(3) $f^{\prime}(x)<0$ on (c, d) only
(4) $f^{\prime}(x)>0$ on $(-\infty, c) \cup(d, e) \cup(e, \infty)$
(5) the graph has inflection points at $x=b, x=0$, and $x=f$
(6) the graph of f is concave downward on $(a, d) \cup(g, \infty)$
(7) $f(x)$ has extremum at $x=b, x=0$, and $x=f$
(8) $f^{\prime}(x)$ has extremum at $x=b, x=0$, and $x=f$
(9) $f^{\prime}(x)$ is increasing on $(-\infty, c) \cup(d, e) \cup(e, \infty)$
(10) $f^{\prime}(x)$ is decreasing on $(-\infty, d)$

Example 4.4.2. Which graph below is the graph of $f(x)=\frac{x+8}{x-8}$. First find pertinent information including domain, asymptotes, intercepts, local extrema, and inflection points.
(1)

(2)
(3)
(4)

Example 4.4.3. Use the given information to choose the correct graph of f.
Domain: All real x, except $x=-2$
$f(-4)=0 ; f(-3)=1 ; f(-1)=-3 ; f(0)=-2$
$f^{\prime}(x)>0$ on $(-\infty,-2)$ and $(-2, \infty)$
$f^{\prime \prime}(x)>0$ on $(-\infty,-2) ; f^{\prime \prime}(x)<0$ on $(-2, \infty)$
Vertical asymptote: $x=-2$; Horizontal asymptote: $y=-1$
(1)

(2)

(3)

