
4.5. Absolute Maxima and Minima

DEFINITIONS

y = f(x) is a function with domain D.

(1) f has an or

at x = c if f(c) ≥ f(x) for all x in D. f(c) is the .

(2) f has an or

at x = c if f(c) ≤ f(x) for all x in D. f(c) is the .

(3) The minimum and maximum values are called the
of f .

(4) f has an or

at x = c if f(c) ≥ f(x) for x “close enough” to c. f(c) is the
.

(5) f has an or

at x = c if f(c) ≤ f(x) for x “close enough” to c. f(c) is the .

(6) “close enough” to c means there is an open interval around c where the state-
ment is true. This open interval can be very small.

(7) The local minimum and local maximum values are called the
of f .
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4.5. Examples

Example 4.5.1. Find all absolute and local extrema and where they occur.
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1. 

For each of the numbers a, b, c, d, r, s, and t, state whether the function whose graph is shown has an absolute maximum or
minimum, a local maximum or minimum, or neither a maximum nor a minimum.

           

           

           

           

           

           

           

2. 

Example 4.5.2. Select ALL the correct choices f(x) = 2− 4x− 4

x
over the interval

(−∞, 0)

(1) f(x) has no maximum
(2) f(x) has no minimum
(3) f(x) has an absolute maximum at x = −1
(4) f(x) has an absolute minimum at x = −1
(5) f(x) has an absolute maximum of 2
(6) f(x) has an absolute minimum of 2
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Useful Theorems

Theorem 4.5.1 (Second Derivative Test). Suppose y = f(x) is such that f ′(c) = 0
(and f is twice differentiable around c).

(1) If f ′′(c) > 0 then

(2) If f ′′(c) < 0 then

(3) If f ′′(c) = 0 or f ′′(x) does not exist, then

Theorem 4.5.2. If f(x) has only one critical number in some interval I, then state-
ments (1) and (2) in Theorem 4.5.1 are absolute extrema.

Example 4.5.3. Find the local extrema of the function of f(x) = x3− 4x2− 3x− 10
using the second derivative test.

Example 4.5.4. If f(x) is continuous on (−∞,∞) such that f ′(7) = 0 and
f ′′(7) = −2, then

a) f(x) has a local maximum at x = 7
b) f(x) has a local minimum at x = 7
c) f(x) has no local extrema at x = 7
d) we are unable to determine if there is a local extrema at x = 7

Example 4.5.5. If f(x) is continuous on (−∞,∞) such that f ′(7) = 1 and
f ′′(7) < 0, then

a) f(x) has a local maximum at x = 7
b) f(x) has a local minimum at x = 7
c) f(x) has no local extrema at x = 7
d) we are unable to determine if there is a local extrema at x = 7
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Example 4.5.6. Find the absolute extrema of f(x) = 5 lnx− x over (0,∞)

Example 4.5.7. Find the the absolute extrema of f(x) = 4x4 − 5.
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Theorem 4.5.3 (The Extreme Value Theorem). If f is continuous on the closed
interval [a, b], then f will attain a minimum and a maximum in the interval.

In other words, if you consider the interval [a, b] as the domain of f , there will be at
least one number c in [a, b] where f(c) is the maximum, and at least one number d in
[a, b] where f(d) is the minimum.

Closed Interval Method

To find the absolute minimum and maximum values of a continuous function f on a
closed interval [a, b]:

Step 1. Find the critical numbers of f in (a, b).

Step 2. Find the function value at all critical value(s) found in step 1.

Step 3. Find f(a) and f(b).

Step 4. The largest value from steps 2 and 3 is the maximum value and the smallest
value from steps 2 and 3 is the minimum value.

Examples

Example 4.5.8. Find all critical values and absolute extrema on the given interval.

f(x) = 6x− x2, [−1, 4]

(1) min value is −7, max value is 9
(2) min value is −7, max value is 40
(3) min value is −5, max value is 8
(4) min value is −5, max value is 40



Section 4.5 6

Example 4.5.9. Find all critical values and absolute extrema on the given interval.

f(x) =
x2 − 4

x2 + 4
, [−4, 4]

Example 4.5.10. Find all the absolute extrema of f(x) = ln x over the interval [1, 2].


