7.3. Maxima Minima

Theorem 7.3.1. Let z = f(x, y) be a function of two variables. GIVEN:

(1)
$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0$ ((a,b) is a ______ for f)

(2) All second partial derivative exist around the point (a, b).

(3)
$$A = f_{xx}(a,b), B = f_{xy}(a,b), C = f_{yy}(a,b)$$

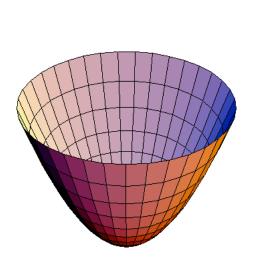
THEN:

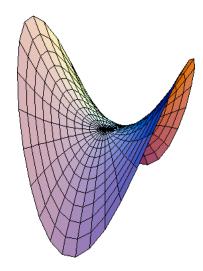
case 1: If $AC-B^2 > 0$ and A < 0, then f(a,b) is a _____

case 2: If $AC-B^2 > 0$ and A > 0, then f(a,b) is a _____

 $case \ 3: \ If \ AC-B^2 < 0, \ then \ f \ has \ a ____ \ at \ (a,b).$

case 4: If $AC - B^2 = 0$ the test fails –





Examples

Example 7.3.1. Find all local extrema and saddle points of $f(x,y) = 2x^2 - 2xy + y^2 - 4x + 6y - 3$

Example 7.3.2. Find all local extrema and saddle points of f(x,y) = 8x + 6y - 17

Example 7.3.3. Find all local extrema and saddle points of $f(x,y) = -2x^2 + 4xy - 3y^2 - 4x + 2y - 3$

Example 7.3.4. Find all local extrema and saddle points of f(x,y) = xy + x - y

Example 7.3.5. Find all local extrema and saddle points of $f(x,y) = 3y^2 - 2x^3 - 24x - 3y - 21$

Example 7.3.6. Find all local extrema and saddle points of $f(x,y) = 2x^3 - 2xy + 2y$

Example 7.3.7. Find all local extrema and saddle points of $f(x,y) = x^3 - 15xy + y^3$

Example 7.3.8. Let z = f(x, y) have a critical point at (-1, 3) and $f_{xx}(-1, 3) = 32$, $f_{xy}(-1, 3) = -4$, $f_{yy}(-1, 3) = \frac{1}{2}$ then f(-1, 3) is a

- a) local max
- b) local min
- c) saddle point
- d) test failed
- e) no local extrema or saddle point

Example 7.3.9. The cost function, C (in hundreds of dollars), of producing two products is $C(x,y) = 2x^2 + 3y^2 - 4xy + 4x - 8y + 20$, where x is the quantity of product A and y is the quantity of product B.

(1) How many of each product should be produced to minimize cost

(2) Find the minimum cost of producing these products.