
ACM Computing Seminar C++ Guide

Matt Hancock

Contents

1 Introduction 2
1.1 A little about the language 3
1.2 Additional references . 3
1.3 License, source, etc. 3

2 Getting started 3
2.1 Text editors . 4
2.2 Compilers . 4
2.3 Writing a program . 4

3 Data types 5
3.1 The bool type . 5
3.2 int types . 6
3.3 Floating point types . 7
3.4 Casting . 7
3.5 The const modi�er . 8
3.6 The typedef keyword . 8
3.7 Pointers and references . 9

3.7.1 Pointers . 9
3.7.2 References . 10

3.8 Arrays . 11
3.8.1 Fixed length arrays . 11
3.8.2 Dynamic length arrays 11

4 Control structures 12
4.1 Conditionals . 12

4.1.1 Example: if / else and random number generation . 12
4.1.2 Example: if / else if / else 13

4.2 Loops . 14
4.2.1 The for loop . 14

1

4.2.2 The while loop . 16
4.2.3 The break keyword . 18

5 Input / Output 18
5.1 Inputs to main: argc and argv 18
5.2 Filestreams . 19

5.2.1 Reading data from a �le 19
5.2.2 Writing data to a �le 20

6 Functions 21
6.1 Writing a function . 21

6.1.1 Example: linspace: generating a set of equally-spaced
points . 22

6.2 Header and implementation �les 23
6.2.1 The header �le . 23
6.2.2 The implementation �le 24
6.2.3 The �le containing main 25

6.3 Function pointers . 25
6.3.1 Example: Newton's method for root�nding 26
6.3.2 Example: The midpoint rule for de�nite integrals . . . 27

7 Object-oriented programming 29
7.1 Example: a vector class . 29

7.1.1 The header �le . 29
7.1.2 The implementation �le 31
7.1.3 Example usage . 32
7.1.4 Operator overloading 33
7.1.5 The copy constructor 36
7.1.6 Friend functions . 37

7.2 Templating: a matrix class . 40
7.2.1 Overloading operator* 43

7.3 Inheritance . 45

1 Introduction

This manual is a guide for quickly learning C++ for mathematical and sci-
enti�c computing applications. The goal of this guide is not to make you a
C++ expert, but to quickly teach you enough of the C++ fundamentals and
design patterns to help you o� the ground. If you should like to go beyond
this guide, a few references are listed below.

2

1.1 A little about the language

Before you dive in, here is a little about the C++ programming language:
C++ is an extension of the C programming language. Both C and C++

are statically-typed and compiled languages, which means that the type
of variables used in your source code must be declared explicitly and is
checked when the program is compiled (i.e., translated into a machine exe-
cutable �le).

One key di�erence between C++ and C, however, is that C++ provides
many mechanisms to allow for the object-oriented programming paradigm.
This essentially allows the software writer to create custom, complex, reusable
data structures. The object-oriented paradigm is extremely useful, but we
will only touch the surface of it in this guide.

1.2 Additional references

� C++ reference

� C++ tutorials

� C++ wiki

� A compiled list of C++ textbooks from stackover�ow

1.3 License, source, etc.

This document was created using Emacs org mode with some custom css
and javascript. You can �nd the license, view the source, and contribute to
this document here:

https://github.com/notmatthancock/acm-computing-seminar

2 Getting started

The particular programming tools that you choose to use will likely be largely
in�uenced by the operating system that you use. We will use free tools (often
developed for GNU / Linux systems) in this guide. These tools are mostly
available in other operating systems as well. For example, on Windows,
you could use Cygwin, or install a dual boot with some Linux distribution
(e.g., Ubuntu). On the other hand, MAC OSX, being a BSD-derived system,
has many of the required tools already available (although, a command line
utility, Brew, makes building and installing other tools very simple).

3

https://en.wikipedia.org/wiki/Object-oriented_programming
http://cppreference.com
http://www.cplusplus.com/doc/tutorial
https://en.wikipedia.org/wiki/C%2B%2B
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list
https://www.gnu.org/software/emacs/
http://orgmode.org/
https://github.com/notmatthancock/acm-computing-seminar
https://github.com/notmatthancock/acm-computing-seminar
https://www.cygwin.com/
http://www.ubuntu.com/
http://brew.sh

In the following two sections, we'll talk about the two basic types of
software that you'll need to begin writing C++ programs.

2.1 Text editors

The text editor that you choose to use should be be any program capable
of editing plain text �les. However, you may �nd that it's more productive
to write in an editor that o�ers features such as syntax highlighting, code-
completion, bracket-matching, or other features. Here are some popular free
text editors:

� Atom is a recently open-sourced GUI editor which some have compared
to the very popular non-free editor, Sublime Text.

� Emacs is another powerful editor, which allows for highly optimized
work�ows.

� Gedit is a nice and simple GUI editor, which is the default in GNOME
desktop environment.

� Kate is a another simple GUI editor, which is the default in the KDE
desktop environment.

� Vim is a modal editor with a steep learning curve. It o�ers highly
e�cient means to edit text, and is available (or it's predecessor, vi) by
default on nearly all UNIX-like operating systems.

2.2 Compilers

Second, you'll need a program called a compiler. A compiler translates
the high-level C++ language into an executable program. In this guide, we
will use the g++ compiler which is freely available through the gnu compiler
collection (gcc).

g++ is a program which you typically call from the command line, which
takes as input, your C++ source code �le, and produces as output, a binary
executable �le.

2.3 Writing a program

Let's create our �rst C++ program, the obligatory "Hello, world!". First,
�re-up your text editor and create a �le called, hello.cpp, with the following
contents:

4

https://atom.io/
https://sublimetext.com
https://www.gnu.org/software/emacs/
https://wiki.gnome.org/Apps/Gedit
https://kate-editor.org
http://www.vim.org
https://gcc.gnu.org/
https://gcc.gnu.org/

1 #include <iostream>

2

3 int main() {

4 std::cout << "Hello, world!";

5 return 0;

6 }

Now, to compile the program, execute:

g++ hello.cpp

Followed by:

./a.out

By default, g++ names the resulting binary executable, a.out, but you
can specify a di�erent output �le name by using the -o �ag:

g++ hello.cpp -o my_executable_file.bin

Note that in Windows, executable �les typically end in .exe. In Unix-like
systems, there is no particular �le-extension type for executables.

3 Data types

As we mentioned previously, you must explicitly declare the type of a vari-
able. So, in this section, we'll talk about the main variable types you'll use.
In the section on object-oriented programming, we'll discuss how to build
more complex data types.

3.1 The bool type

A boolean data type is either true or false. There are a number of operators
between these types, illustrated in the code snippet below (note that lines
starting with // are comments and are ignored by the compiler):

1 bool a,b,c; // Declare the type of variables a, b, and c.

2 a = true;

3 b = false;

4

5 // ! is logical negation when applied to a single variable.

5

6 c = !a; // c is false.

7

8 // && is logical and.

9 c = (a && b); // c is false.

10

11 // || is logical or.

12 c = (a || b); // c is true.

We don't often use boolean variables by themselves, but rather as a result
of comparing two other data types (such as comparing if one integer is less
than another integer). Expressions that result in boolean values are mostly
used in conditional control structures.

3.2 int types

There are a variety of integer types in C++. Below, we illustrate a couple.
These can be modi�ed further using the short and long keywords, changing
the number of bytes occupied by the variable (and hence the maximum and
minimum size the variable can take on).

1 int a = 6; // initialize a to 6.

2 unsigned int b = 7; // initialize b to 7.

3 int c; // declare c to be an integer variable.

4

5 a = 6;

6 b = 7;

7

8 c = a / b; // c is 0

9 c = b / a; // c is 1

10 c = b % a; // c is 1 (% is the integer remainder or modulo operator)

11 c = a - b; // c is -1

12 c = a > b; // c is 0 (boolean gets cast to integer)

13 c = a < b; // c is 1 (boolean gets cast to integer)

14 c++; // c is 2 (++ is shorthand for c = c + 1)

15

16 b = a - b; // b is 4294967295 (-1 gets cast to unsigned)

17 b = b + 1; // b is 0 (b was previously the largest unsigned,

18 // so adding one circles it back to zero.)

19 b += 7; // b is 7 (+= is shorthand for b = b + 7;

In the above, we've illustrated the use of signed and unsigned integer
types and the operators between them. It is important to take care when

6

http://en.cppreference.com/w/cpp/language/types

you assign a result to a variable that doesn't match the type of the result.
In many cases, the result gets implicitly cast to the type of variable being
assigned to. The result may or may not match your expectations, as shown
above.

3.3 Floating point types

There are two main �oating point data types in C++, float and double,
which correspond to IEEE 32- and 64-bit �oating point types.

1 #include <iostream>

2 #include <limits>

3

4 int main() {

5 float a; // Declare a single precision float.

6 double b; // Declare a double precision float.

7

8 // Print the max value of a float type.

9 std::cout << std::numeric_limits<float>::max() << std::endl;

10

11 // Print the max value of a double type.

12 std::cout << std::numeric_limits<double>::max() << std::endl;

13

14 // Print machine epsilon of a float type.

15 std::cout << std::numeric_limits<float>::epsilon() << std::endl;

16

17 // Print machine epsilon of a double type.

18 std::cout << std::numeric_limits<double>::epsilon() << std::endl;

19

20 return 0;

21 }

3.40282e+38

1.79769e+308

1.19209e-07

2.22045e-16

3.4 Casting

Sometimes it is useful to explicitly cast one variable type as another. This
can be done like the following:

7

https://en.wikipedia.org/wiki/IEEE_floating_point

1 int a; double b = 3.14159;

2

3 a = (int) b;

4

5 std::cout << a << std::endl;

3

3.5 The const modi�er

If the value of some variable should not change, you can use the const

keyword to protect its status. It is typical to denote const variables with all
caps. Try to compile the following program:

1 const double PI = 3.14159;

2

3 PI = 3.0;

You will see an error like, error: assignment of read-only variable

`PI'.

3.6 The typedef keyword

Suppose you have a large numerical experiment, where all your code used
�oating point of type double. Your curious about how the results will be
a�ected by changing the �oating point type to single precision float type.
One solution would be to run a "�nd and replace" in your editor, but some-
thing about that doesn't feel right.

Instead, we can use the typedef statement to de�ne types:

1 // Define "int_type" to be a short int.

2 typedef short int int_type;

3

4 // Define "float_type" to be single precision float.

5 typedef float float_type;

6

7 // Define "array_index_type" to be unsigned long int.

8 typedef unsigned long int array_index_type;

9

10 int_type a = -17;

11 float_type b = 1.14;

12 array_index_type c = 9;

8

3.7 Pointers and references

3.7.1 Pointers

Pointers are variables that hold the memory address for a variable of a
speci�c type. Pointers are declared by specifying the variable type, followed
by the * symbol, followed by the name of the pointer variable, e.g., double
* x de�nes a "pointer to double" variable. The variable, x, therefore, does
not hold the value of a double type, but rather, the memory address for a
variable of type, double. The memory address for a variable can be obtained
by the & operator.

1 double * a;

2 double b = 7;

3

4 // This obtains the memory address of `b`.

5 a = &b;

6

7 // Prints some memory address (starts with 0x)

8 std::cout << a << std::endl;

0x7ffe0d98f7b8

Similar to obtaining the memory address from a regular variable, using
the & operator, you can use the * symbol before a pointer to access the
variable value held at the memory location of the pointer. In this context,
the * symbol is called the dereference operator. This is probably better
understood with a short example:

1 double * a;

2 double b = 7.3;

3 double c;

4

5 // Now `a` holds the memory address of `b`.

6 a = &b;

7

8 // `*a` obtains the value of the variable

9 // at the memory address held by `a`.

10 // So, `c` is 7.3.

11 c = *a;

12

13 std::cout << c << "\n";

9

7.3

3.7.2 References

A reference is a sort of like a pointer, but not quite. There are di�erences.
A good analogy, which you can �nd in the previous link, is that a reference
is similar to a symbolic link, or "shortcut" if you're on Windows. You can
treat it more-or-less like the original variable, but it's not the original.

1 double a = 1.1;

2 // `b` is a reference to `a`.

3 double & b = a;

4

5 std::cout << "a: " << a << ", b: " << b << "\n";

6

7 a = 2.1;

8

9 std::cout << "a: " << a << ", b: " << b << "\n";

10

11 b = 3.1;

12

13 std::cout << "a: " << a << ", b: " << b << "\n";

14

15 std::cout << "\n\n";

16 std::cout << "&a: " << &a << "\n" << "&b: " << &b << "\n";

a: 1.1, b: 1.1

a: 2.1, b: 2.1

a: 3.1, b: 3.1

&a: 0x7ffcfbe7b1e8

&b: 0x7ffcfbe7b1e8

References are useful for passing around large objects, so that the object
doesn't need to be copied. References are also useful as a return type for
functions (to be discussed later) because it allows to assign to assign a value
to a function, which is useful if the function, for example, returns a reference
to the element of an array.

10

https://en.wikipedia.org/wiki/Reference_(C%2B%2B)

3.8 Arrays

The length of an array can be �xed or dynamic, and how you declare the
array depends on this. Array indexing starts at 0 in C++ (compared to start
at 1, for example, in Fortran or Matlab).

3.8.1 Fixed length arrays

1 double a[5];

2

3 a[0] = 1.0;

4 // etc.

3.8.2 Dynamic length arrays

Dynamic length arrays are made possible through pointers:

1 // This allocates memory for 5 double types.

2 double * a = new double[5];

3

4 // Afterwards, you can treat `a` like a normal array.

5 a[0] = 1.0;

6 // etc...

7

8 // Whenever you use the `new` keyword, you must

9 // delete the memory allocated when you're done by hand.

10 delete [] a;

11

12 // We can change the size of `a`.

13 a = new double [10];

14

15 a[0] = 2.0;

16 // etc...

17

18 delete [] a;

Note that omitting the �rst delete statement will cause no error. How-
ever, the memory allocated by the �rst new statement will not be freed, and
thus inaccessible. This is bad because the memory cannot be allocated to
other resources. You should generally try to avoid manually memory man-
agement when possible, but a good tool for debugging memory problems is
called valgrind.

11

http://valgrind.org/

4 Control structures

4.1 Conditionals

4.1.1 Example: if / else and random number generation

Often a code block should only be executed if some condition is true. Below,
we generate a random number between 0 and 1; print the number; and, print
whether or not the number was greater than 0.5.

1 #include <iostream>

2 #include <stdlib.h>

3 #include <time.h>

4

5 int main() {

6 // Seed a random number generator.

7 srand(123);

8

9 // rand() produces a random integer between 0 and RAND_MAX.

10 double num = rand() / ((double) RAND_MAX);

11

12 std::cout << "num: " << num << "\n";

13

14 if (num < 0.5) {

15 std::cout << "num was less than 0.5.\n";

16 }

17 else {

18 std::cout << "num was greater than 0.5.\n";

19 }

20

21 // Do it again.

22 num = rand() / ((double) RAND_MAX);

23

24 std::cout << "num: " << num << "\n";

25

26 if (num < 0.5) {

27 std::cout << "num was less than 0.5.\n";

28 }

29 else {

30 std::cout << "num was greater than 0.5.\n";

31 }

12

32

33 return 0;

34 }

num: 0.0600514

num was less than 0.5.

num: 0.788318

num was greater than 0.5.

4.1.2 Example: if / else if / else

You can follow else immediate by another if to have multiple mutually-
exclusive blocks:

1 #include <iostream>

2 #include <stdlib.h>

3 #include <time.h>

4

5 int main() {

6 // Seed the random number generator based on the current time.

7 srand(time(NULL));

8

9 // rand() produces a random integer between 0 and RAND_MAX.

10 double num = rand() / ((double) RAND_MAX);

11

12 std::cout << "num: " << num << "\n";

13

14 if (num >= 0.75) {

15 std::cout << "num was between 0.75 and 1.\n";

16 }

17 else if (num >= 0.5) {

18 std::cout << "num was between 0.5 and 0.75.";

19 }

20 else if (num >= 0.25) {

21 std::cout << "num was between 0.25 and 0.5.";

22 }

23 else {

24 std::cout << "num was between 0 and 0.25";

25 }

26

27 return 0;

13

28 }

num: 0.0456405

num was between 0 and 0.25

The conditions are checked in the order that they're written. So, for
example, in the second condition, we don't need to specify num >= 0.5 &&

num < 0.75 because we know that this condition will only be checked if the
previous was false.

4.2 Loops

We discuss two main structures for iterating � the for and while loops.

4.2.1 The for loop

The for loop requires three speci�cations � the iteration variable initializa-
tion, the termination condition, and the update rule. The body of the loop
follows these three speci�cations. Shown below, we declare an array; assign
to its components; and, print the current component to the screen.

1 int length = 11;

2 double x[length];

3

4 for(int i=0; i < length; i++) {

5 // Assign to each array component.

6 x[i] = (double) i / (length - 1);

7

8 // Print the current component.

9 std::cout << "x[" << i << "] = " << x[i] << std::endl;

10 }

x[0] = 0

x[1] = 0.1

x[2] = 0.2

x[3] = 0.3

x[4] = 0.4

x[5] = 0.5

x[6] = 0.6

x[7] = 0.7

x[8] = 0.8

x[9] = 0.9

x[10] = 1

14

Example: row-major matrix You can nest loops, i.e., loops inside of
loops, etc.

Below, is an example of a double loop for creating and accessing matrix
data stored in a �at array. The matrix data is stored in row-major order.
This means the �rst n_cols elements of the array named, matrix, will con-
tain the �rst row of the matrix, the second n_cols elements of matrix will
contain the second row, etc.

1 int n_rows = 4;

2 int n_cols = 3;

3

4 // Row-major matrix array.

5 double matrix [n_rows*n_cols];

6

7 // temporary index.

8 int k;

9

10 for(int i=0; i < n_rows; i++) {

11 for(int j=0; j < n_cols; j++) {

12 // Convert the (i,j) matrix index to the "flat" row-major index.

13 k = i*n_cols + j;

14

15 // Assign a value of 1.0 to the diagonal,

16 // 2 to the off-diagonal, and 0 otherwise.

17 if (i == j) {

18 matrix[k] = 1.0;

19 }

20 else if ((i == (j+1)) || (i == (j-1))){

21 matrix[k] = 2.0;

22 }

23 else {

24 matrix[k] = 0.0;

25 }

26 }

27 }

28

29

30 // Print the matrix elements.

31 for(int i=0; i < n_rows; i++) {

32 for(int j=0; j < n_cols; j++) {

15

https://en.wikipedia.org/wiki/Row-major-order

33 k = i*n_cols + j;

34

35 std::cout << matrix[k];

36 if (j != (n_cols-1)) {

37 std::cout << ", ";

38 }

39 }

40

41 if (i != (n_rows-1)) {

42 std::cout << "\n";

43 }

44 }

1, 2, 0

2, 1, 2

0, 2, 1

0, 0, 2

4.2.2 The while loop

A while loop iterates while a condition is true. Essentially, it is a for loop
without an update variable.

Example: truncated sum In the following example, we approximate the
geometric series:

1 =
∑∞

n=1

(
1
2

)n
The loop exits when the absolute error,
absolute error := 1−

∑N
n=1

(
1
2

)n
is less than some speci�ed tolerance, tol.

1 double sum = 0.0;

2 double base = 0.5;

3 double pow = base; // initialize to base^1

4 double tol = 1e-4;

5 int iter = 1;

6

7 while((1-sum) >= tol) {

8 // Add `pow` to `sum`.

9 sum += pow;

10 // Update `pow` by one power of `base`.

16

11 pow *= base;

12

13 printf("Iter: %03d, Sum: %.5f, Abs Err: %.5f\n", iter, sum, 1-sum);

14

15 // Update the `iter` val by 1.

16 iter += 1;

17 }

Iter: 001, Sum: 0.50000, Abs Err: 0.50000

Iter: 002, Sum: 0.75000, Abs Err: 0.25000

Iter: 003, Sum: 0.87500, Abs Err: 0.12500

Iter: 004, Sum: 0.93750, Abs Err: 0.06250

Iter: 005, Sum: 0.96875, Abs Err: 0.03125

Iter: 006, Sum: 0.98438, Abs Err: 0.01562

Iter: 007, Sum: 0.99219, Abs Err: 0.00781

Iter: 008, Sum: 0.99609, Abs Err: 0.00391

Iter: 009, Sum: 0.99805, Abs Err: 0.00195

Iter: 010, Sum: 0.99902, Abs Err: 0.00098

Iter: 011, Sum: 0.99951, Abs Err: 0.00049

Iter: 012, Sum: 0.99976, Abs Err: 0.00024

Iter: 013, Sum: 0.99988, Abs Err: 0.00012

Iter: 014, Sum: 0.99994, Abs Err: 0.00006

Example: estimating machine epsilon

1 double eps = 1;

2 int count = 1;

3

4 while(1.0 + eps*0.5 > 1.0) {

5 eps *= 0.5;

6 count += 1;

7 }

8

9 std::cout << eps << ", " << std::numeric_limits<double>::epsilon() << "\n"

10 << count << ", " << std::numeric_limits<double>::digits;

2.22045e-16, 2.22045e-16

53, 53

17

4.2.3 The break keyword

The break keyword provides a mechanism for exiting the direct parent loop
for which the break statement is placed. For example:

1 for(int i=0; i < 3; i++) {

2 while(true) {

3 std::cout << "Entering infinite loop number " << (i+1) << "\n";

4 break;

5 }

6 std::cout << "We escaped the infinite loop!\n";

7 }

Entering infinite loop number 1

We escaped the infinite loop!

Entering infinite loop number 2

We escaped the infinite loop!

Entering infinite loop number 3

We escaped the infinite loop!

The previous example is contrived, but there are situations, where you
might �nd the break statement within an in�nite loop useful. Of course, you
should avoid this sort of thing if there is a more straight-forward approach.

5 Input / Output

We have already used the <iostream> library to print results to the console.
However, in many cases, we'd like to read in lots of data from a �le, pass
option �ags to the program from the command line, or save the results of
some computation to a �le for further analysis.

5.1 Inputs to main: argc and argv

The main function has two optional arguments which we have thus far omit-
ted, argc and argv. These arguments allow arguments to passed to the main
function when the program is run. This is how �ags and other arguments
are passed to programs you use from the command line. The �rst, argc, is
of type, int, and stands for arg count. It gives the number of arguments to
the program. The arg count is always at least 1 because the program's name
is always the �rst argument. The second, argv, is a double pointer to char.
In essence, argv is an array of strings.

18

1 #include <iostream>

2

3 int main(int argc, char ** argv) {

4 std::cout << "argc = " << argc << "\n";

5

6 for(int i=0; i < argc; i++) {

7 std::cout << "argv[" << i << "] = " << argv[i] << "\n";

8 }

9 return 0;

10 }

Compile this program, and run, for example:

g++ main.cpp

./a.out hello 1 2 34

argc = 5

argv[0] = ./a.out

argv[1] = hello

argv[2] = 1

argv[3] = 2

argv[4] = 34

argc and argv are handy for setting up large experiments. You could, for
example, set up your main function so that di�erent functions or parameters
or used based on the arguments of arcv. Then, you could set up a shell
script that loops through the desired arguments to be supplied to the main
function.

5.2 Filestreams

File input and output is crucial for numerical experiments with lots of data.
In this section, we see how to read and write data to �les.

5.2.1 Reading data from a �le

In general, how data is read in depends heavily on how the data is stored.
Nevertheless, we will give an example of reading in a vector stored in a partic-
ular fashion. Suppose a text �le exists in the directory, ./data/vector.txt,
containing

1 2 3.14 4 5 6.28

19

1 #include <iostream>

2 #include <fstream>

3

4 int main() {

5 std::fstream fin("./data/vector.txt", std::ios_base::in);

6 double vector[6];

7 int i = 0;

8 while(fin >> vector[i]) {

9 std::cout << vector[i] << " ";

10 i++;

11 }

12 return 0;

13 }

g++ main.cpp && ./a.out

1 2 3.14 4 5 6.28

This simply prints the data in the �le back out to the console. Note,
however, that the data is read into an array of type double, so it can be
processed numerically thereafter.

In this example dealt with simply stored data, and it was assumed that
the number of data entries was known beforehand. Parsing data can be-
come quite complicated depending on how it is stored, and depending on
the intended format of the data.

5.2.2 Writing data to a �le

Writing to a �le is similar, using the <fstream> library.

1 #include <fstream>

2 #include <cmath>

3

4 int main() {

5 std::fstream fout("./data/new_shiny_data.txt", std::ios_base::out);

6 double x;

7

8 fout << "x\tsin(x)\n";

9

10 for(int i=0; i < 11; i++) {

11 x = i / 10.0;

20

12 fout << x << "\t" << sin(x) << "\n";

13 }

14

15 fout.close();

16

17 return 0;

18 }

This produces a �le called new_shiny_data.txt in the folder, data, con-
taining:

x sin(x)

0 0

0.1 0.0998334

0.2 0.198669

0.3 0.29552

0.4 0.389418

0.5 0.479426

0.6 0.564642

0.7 0.644218

0.8 0.717356

0.9 0.783327

1 0.841471

6 Functions

So far, we've piled everything into the main function. When we have a
block of code used for a speci�c subtask, we can o�oad it to a function.
This promotes code which is separated based on the subtasks each block is
intended to perform. This, in turn, makes your code easier to debug and
easier to understand.

6.1 Writing a function

A function must be declared before use. Thus, a function usual consists
of two parts, a declaration and an implementation. You must declare the
return type of a function as well as the types of all the function's arguments.
If the function is de�ned in the same �le as the main function, you should
write the declaration before main and the implementation after main.

21

6.1.1 Example: linspace: generating a set of equally-spaced points

1 #include <iostream>

2

3 // This is the function declaration.

4 // You should describe the functions arguments

5 // and what is returned by the function in comments

6 // near the declaration.

7 //

8 // `linspace` returns an array of doubles containing

9 // `n_points` entries which are equally-spaced, starting

10 // at `start` and ending at `stop`.

11 double * linspace(double start, double stop, int n_points);

12

13 // `void` is a function with no return type.

14 // `print_array` takes an array and prints it to std out.

15 void print_array(double * arr, int arr_len);

16

17 int main() {

18 double * xs = linspace(-1, 1, 5);

19 print_array(xs, 5);

20 delete [] xs;

21

22 return 0;

23 }

24

25 // Implementation of `linspace`.

26 double * linspace(double start, double stop, int n_points) {

27 double * arr = new double [n_points];

28 double dx = (stop-start) / (n_points-1.0);

29

30 for(int i=0; i < n_points; i++) {

31 arr[i] = start + i*dx;

32 }

33

34 return arr;

35 }

36

37 // Implementation of `print_array`.

38 void print_array(double * arr, int arr_len) {

22

39 for(int i=0; i < arr_len; i++) {

40 std::cout << arr[i] << "\n";

41 }

42 }

-1

-0.5

0

0.5

1

6.2 Header and implementation �les

The example in the previous section certainly made the main function cleaner
and simpler to understand, having only two function calls. However, the �le
itself was still pretty messy. Thankfully, there is a way to modularize further,
by creating header and implementation �les. Here is how we do it:

6.2.1 The header �le

Put the declarations from the into a header �le, called my_library.h:

1 #ifndef MY_LIBRARY_H

2 #define MY_LIBRARY_H

3

4 #include <iostream>

5

6 namespace my_namespace {

7 // `linspace` returns an array of doubles containing

8 // `n_points` entries which are equally-spaced, starting

9 // at `start` and ending at `stop`.

10 double * linspace(double start, double stop, int n_points);

11

12 // `void` is a function with no return type.

13 // `print_array` takes an array and prints it to std out.

14 void print_array(double * arr, int arr_len);

15 }

16

17 #endif

23

Note the the function declarations are wrapped in conditional "macro"
statments, #ifndef, #define, and #endif. You can think of this as protect-
ing your library from being imported twice.

We have also introduced the notion of a namespace above. Namespaces
help to prevent naming clashes between separate libraries. When calling
a function from a particular namespace, you must write the namespace fol-
lowed by :: and then the function name. This is why many standard library
functions like <iostream> begin with std::.

6.2.2 The implementation �le

Create a �le called my_library.cpp containing the implementations as fol-
lows:

1 #include "my_library.h"

2

3 // Implementation of `linspace`.

4 double * my_namespace::linspace(double start, double stop, int n_points) {

5 double * arr = new double [n_points];

6 double dx = (stop-start) / (n_points-1.0);

7

8 for(int i=0; i < n_points; i++) {

9 arr[i] = start + i*dx;

10 }

11

12 return arr;

13 }

14

15 // Implementation of `print_array`.

16 void my_namespace::print_array(double * arr, int arr_len) {

17 for(int i=0; i < arr_len; i++) {

18 std::cout << arr[i] << "\n";

19 }

20 }

Note that we have to include the header �le in quotations at the begin-
ning, and the names of the functions must be prepended by the namespace
that we've given in the header �le.

24

6.2.3 The �le containing main

Create a �le with the main function, say main.cpp:

1 #include <iostream>

2 #include "my_library.h"

3

4 int main() {

5 double * xs = my_namespace::linspace(-1,1,5);

6 my_namespace::print_array(xs, 5);

7 delete [] xs;

8

9 return 0;

10 }

Now the main function is very nice and clean, but now we 3 separate �les
we must compile into one executable. This is done as follows:

Convert the library into an object file.

g++ -c my_library.cpp

Compile the main to an executable.

g++ my_library.o main.cpp

Run it.

./a.out

-1

-0.5

0

0.5

1

If successful, you will see the same output as previously.

6.3 Function pointers

Pointers can be made to functions, and these function pointers can be used
as arguments to other functions. We'll look at two functions that accept a
function pointer as one of their arguments.

25

6.3.1 Example: Newton's method for root�nding

Suppose f : R→ R, and we'd like to �nd a root of f . Newton's method is an
iterative method for �nding roots, which, starting from some initial guess,
x0, iterates:

xn+1 ← xn − f(xn)
f ′(xn)

For simplicity, we'll dump everything into the �le containing main, but
you could imagine a libary with many methods for �nding roots, which would
contain Newton's method.

Let's consider f(x) = x2 − 2.

1 #include <cmath>

2 #include <iostream>

3

4 // The function to find the root of.

5 double func(double x);

6 // Its derivative.

7 double dfunc(double x);

8

9 // Find the root of `f` using Newton's method,

10 // starting from `x0` until |f(x)| < `tol` or `max_iters`

11 // is reached.

12 //

13 // Note the first and second arguments are function pointers.

14 double newton_root(double (*f)(double), double (*df)(double), double x0,

15 double tol, int max_iters, bool print_iters);

16

17 int main() {

18 double x = newton_root(&func, &dfunc, 1.0, 1e-6, 1000, true);

19

20 return 0;

21 }

22

23 double func(double x) { return x*x - 2; }

24 double dfunc(double x) { return 2*x; }

25

26 double newton_root(double (*f)(double), double (*df)(double), double x0,

27 double tol, int max_iters, bool print_iters) {

28 double x = x0;

29 int iter = 0;

26

30

31 while (std::abs(f(x)) > tol && iter < max_iters) {

32 if (print_iters) {

33 std::cout << "f(" << x << ") = " << f(x) << "\n";

34 }

35

36 // Newton's method update.

37 x -= f(x) / df(x);

38 iter++;

39 }

40

41 // One last print if necessary.

42 if (print_iters) {

43 std::cout << "f(" << x << ") = " << f(x) << "\n";

44 }

45

46 return x;

47 }

f(1) = -1

f(1.5) = 0.25

f(1.41667) = 0.00694444

f(1.41422) = 6.0073e-06

f(1.41421) = 4.51061e-12

6.3.2 Example: The midpoint rule for de�nite integrals

The midpoint rule is a numerical integration method which approximates
the de�nite integral of a speci�ed function over a speci�ed interval using a
speci�ed number of subintervals where on each subinterval, the area under
the curve is approximated by a rectangle whose width is the width of the
subinterval and whose height is the height of the function at the midpoint
between the points de�ning the end points of the subinterval.

Speci�cally, if n equally-sized subintervals are used on [a, b], then the
midpoint rule approximation, Mn, to the de�nite integral of f(x) on [a, b] is:∫ b

a f(x) dx ≈
∑n

i=1 f
(
xi−1+xi

2

)
∆x =: Mn

where ∆x = b−a
n , and xi = a + i ·∆x, i = 0, 1, . . . , n.

Let's consider f(x) = 1
x on [1, e].

1 #include <iostream>

27

2 #include <cmath>

3

4 const double E = std::exp(1.0);

5

6 // The function to be integrated.

7 double func(double x);

8

9 // Compute the midpoint rule approximation to

10 // the definite integral of `f` from `a` to `b`

11 // using `n` subintervals.

12 double midpoint_rule(double (*f)(double), double a, double b, int n);

13

14

15 int main() {

16 for(int n=2; n <= 20; n += 2) {

17 std::cout << "n = " << n << ", "

18 << "M_n = " << midpoint_rule(&func, 1, E, n) << "\n";

19 }

20

21 return 0;

22 }

23

24 double func(double x) { return 1.0 / x; }

25

26 double midpoint_rule(double (*f)(double), double a, double b, int n) {

27 double xi;

28 double xi_prev = a;

29 double dx = (b-a) / n;

30 double sum;

31

32 for(int i=1; i <= n; i++) {

33 xi = a + i*dx;

34 sum += f(0.5*(xi_prev + xi));

35 xi_prev = xi;

36 }

37

38 return sum*dx;

39 }

n = 2, M_n = 0.97636

28

n = 4, M_n = 0.993575

n = 6, M_n = 0.997091

n = 8, M_n = 0.998353

n = 10, M_n = 0.998942

n = 12, M_n = 0.999264

n = 14, M_n = 0.999459

n = 16, M_n = 0.999585

n = 18, M_n = 0.999672

n = 20, M_n = 0.999734

7 Object-oriented programming

New data types can be created by writing a new class. A class has state
variables and functions that act on the state variables. An instance of a
class is called an object. Let's write a vector class that improves upon
the default double array.

7.1 Example: a vector class

7.1.1 The header �le

Create the header �le, vector.h:

1 #ifndef VECTOR_H

2 #define VECTOR_H

3

4 namespace vec {

5 class vector {

6 public:

7 // Constructor. This function is called when the object is created.

8 vector(unsigned len);

9

10 // Destructor. This function is called when the object is destroyed.

11 ~vector();

12

13 // length accessor.

14 unsigned len() const;

15

16 // data accessor.

17 double & element(unsigned i) const;

29

18

19 // Simple print function.

20 void print() const;

21

22 private:

23 unsigned length;

24 double * data;

25 void check_index(unsigned i) const;

26 };

27 }

28 #endif

First note the macro guards, #ifndef, #define, and #endif, as well as
the namespace, vec, wrapping the class declaration. Macro guards and
namespaces were previously discussed when we initially introduced how to
write header and implementation �les.

Now, within the namespace, we've declared a class, vector, which con-
tains public and private variables and function declarations. Private func-
tions and variables may only be accessed through the public methods. This
means if you created an instance of the class, vector, you would not be
able to access the private variable directly. You could only call the public
member-functions, which, in turn, may manipulate the private member-
variables, or call the private member-functions. Splitting variables and
functions into public and private helps to ensure that other libraries and
programs use your class as intended.

Thus far, this class has 5 public member-functions, 2 private member-
variables, and 1 private member-function. The �rst two member functions
are special, the constructor and destructor, respectively. The constructor
is called explicitly when you declare a new instance of this class, while the
destructor is usually called implicitly when the object is deleted or when it
goes out of scope.

Notice that the method for accessing elements of vector is called element
and its return type is a reference (discussed previously). This allows us to
use this function on both the left side of assignment operators, i.e., to assign
values to vector components, and on the right side of assignments, i.e., to
treat it as the value of the component.

Finally, notice that some member function declarations end with the
keyword, const. Functions with such a signature are not allowed to modify
member variables, and they are also not allowed to call other non const

member functions.

30

7.1.2 The implementation �le

Create the implementation �le, vector.cpp:

1 #include <iostream>

2 #include <cstdlib>

3 #include "vector.h"

4

5 namespace vec {

6 vector::vector(unsigned len) {

7 this->length = len;

8 this->data = new double[len];

9 // Initialize data to zeros.

10 for(int i=0; i < this->len(); i++) { this->data[i] = 0.0; }

11 }

12

13 vector::~vector() {

14 delete [] this->data;

15 }

16

17 unsigned vector::len() const {

18 return this->length;

19 }

20

21 double & vector::element(unsigned i) const {

22 #ifndef NDEBUG

23 check_index(i);

24 #endif

25 return this->data[i];

26 }

27

28 void vector::print() const {

29 for(int i=0; i < this->len(); i++) {

30 std::cout << this->data[i] << '\n';

31 }

32 }

33

34 void vector::check_index(unsigned i) const {

35 if (i < 0 || i >= this->length) {

36 std::cerr << "ERROR: index, " << i << ", is out-of-bounds.\n"

37 << "(valid indices are 0-" << (this->length-1) << ")\n";

31

38 exit(1);

39 }

40 }

41 }

Note that we again wrap the implementations in the same namespace as
wrapped by the class declaration. Also observe how each member-function
is prepended by vector::.

The keyword, this, is a pointer to the calling object. Writing, this->,
is equivalent to (*this)., and in fact, can be used for any pointer. Thus,
this->length is equivalent to (*this).length.

Observe how the private member function, check_index, is used in the
public element accessor function. If this library is compiled with the �ag,
-DNEDUBG, then the check function will not be called. You could read this
�ag as "de�ne no debug". Thus, when this �ag is present, the debug func-
tion check_index is called whenever the element accessor is called. The
check_index function simply checks if the provided index is out-of-bounds
for the vector. If it is, an informative message is printed, and the program
terminates prematurely by calling exit(1). Such assertions with informa-
tive messages are a good practice, and will likely save you lots of headaches
in the future.

7.1.3 Example usage

Ok. Let's see some example usage, by creating a main.cpp, containing:

1 #include <iostream>

2 #include "vector.h"

3

4 int main() {

5 vec::vector v(5);

6

7 std::cout << "`v` has length = " << v.len() << "\n";

8

9 v.element(0) = -1.27;

10 v.element(3) = 3.1;

11

12 v.print();

13

14 v.element(5) = 1234.0;

32

15

16 return 0;

17 }

Let's �rst compile with our check_index debugger function in place:

g++ -c vector.cpp

g++ vector.o main.cpp

./a.out

If successful, you should see:

`v` has length = 5

-1.27

0

0

3.1

0

ERROR: index, 5, is out-of-bounds.

(valid indices are 0-4)

Now let's run without check_index:

g++ -DNDEBUG -c vector.cpp

g++ vector.o main.cpp

./a.out

Upon running, you will likely see some extensive list of errors when the
element beyond the array's length is attempted to be accessed. Again, by lib-
erally sprinkling these sorts of assertions through your code, you will (some-
times) �nd debugging much easier. After you're fairly certain that your code
is working, you can simply compile with -DNEDUBG.

7.1.4 Operator overloading

The v.element(i) accessor is a bit clunky. We can replace this with the
more natural, v[i], by overloading the [] operator. Indeed, we can over-
load many of the normal C++ operators, e.g. +, -, =, etc. Some of these
operators require more careful consideration when implementing class that
utilizes dynamic memory allocation, such as our vector class.

33

http://en.cppreference.com/w/cpp/language/operators
http://en.cppreference.com/w/cpp/language/operators

Overloading operator[] In the header �le, replace the element function
declaration with:

1 // data accessor.

2 double & operator[](unsigned i) const;

and in the implementation �le, replace the element implementation with:

1 double & vector::operator[](unsigned i) const {

2 #ifndef NDEBUG

3 check_index(i);

4 #endif

5 return this->data[i];

6 }

Just think of operator[] as the new name of the function, element.
We can now use the overloaded operator just like how we would use the
[] for operator for accessing array components, expect now our overloaded
operator function is called instead.

1 v[0] = -1.27;

2 v[3] = 3.1;

Compile and run:

g++ -c vector.cpp && g++ vector.o main.cpp && ./a.out

and you should see:

-1.27

0

0

3.1

0

just like before.

34

Overloading operator= Let's overload the = operator so we can assign
one vector to another. We'll write in a way such that the vector on the left
hand side is overwritten by the one on the right.

Let's add a declaration to the header �le,

1 // assignment operator.

2 vector & operator=(const vector & src);

and let's add to the implementation �le,

1 vector & vector::operator=(const vector & src) {

2 // Delete the old data.

3 delete [] this->data;

4

5 // Initialize the new data.

6 this->length = src.len();

7 this->data = new double[this->len()];

8

9 // Copy over the new data.

10 for(int i=0; i < this->len(); i++) {

11 this->data[i] = src[i];

12 }

13

14 return *this;

15 }

Now, let's assume the vector instance, v, from above is still de�ned, and
we'll create a new vector:

1 vec::vector w(14);

2 w = v;

3 w.print();

This should print,

-1.27

0

0

3.1

0

Notice that w is intially de�ned to be of length 14, but this is overwritten,
and its new length is the length of v. Also note that all of w's old data is
deleted.

35

7.1.5 The copy constructor

It may be tempting at this point to attempt to initialize w from v directly:

1 vec::vector w = v;

If you attempt this currently, you will see all sorts of errors. This is
because this type of intialization does not call the assignment operator. It
calls the copy constructor. The assignment operator is only called when
the object has already been intialized. Writing the previous line of code is
essentially equivalent to

1 vec::vector w(v);

In other words, the constructor is called with the existing vector, v, as
the argument, but we have not written a constructor yet with such a call
signature.

The constructor can be overloaded, i.e., we can write multiple versions
of the constructor function, and the one that matches the correct call signa-
ture will be used. This function overloading behavior actually applies to all
functions in C++.

Let's add the copy constructor declaration to the header �le:

1 // Copy constructor.

2 vector(const vector & src);

and let's add its implementation:

1 vector::vector(const vector & src) {

2 this->length = src.len();

3 this->data = new double[this->len()];

4

5 // Copy over the data.

6 for(int i=0; i < this->len(); i++) {

7 this->data[i] = src[i];

8 }

9 }

Now we compile and run something like:

1 vec::vector w = v;

2 w.print();

36

we will see:

-1.27

0

0

3.1

0

7.1.6 Friend functions

Non-member functions may access private member variables and private
member functions of by labeling them as friend. This is useful in situa-
tions where it is not clear that function should be "called on" an object, i.e.
object.method(params). Friend functions should be declared in the class
declaration, but their implementation is not prepended with class::, which
is necessary for member functions.

Overloading operator* As an example, we'll overload operator* to im-
plement scalar multiplication.

Because scalar multiplication should commute, let's add the following
two declarations to our header �le:

1 friend vector operator*(const vector & v, double s);

2 friend vector operator*(double s, const vector & v);

Let's implement the �rst by adding to the declaration �le:

1 vector operator*(const vector & v, double s) {

2 // Copy v to start.

3 vector result = v;

4 // Then multiply all entries by scalar, s.

5 for(int i=0; i < v.len(); i++) {

6 result[i] *= s;

7 }

8 return result;

9 }

Observe how we didn't prepend vector:: before operator* because
these are friend functions.

Now, we can use the �rst implementation to achieve the second:

37

1 vector operator*(double s, const vector & v) {

2 return v*s;

3 }

And let's try it out:

1 #include <iostream>

2 #include "vector.h"

3

4 int main() {

5 vec::vector v(5);

6

7 v[0] = -1.27;

8 v[3] = 3.1;

9

10 vec::vector w = 2*v;

11

12 w.print();

13

14 std::cout << "\n";

15

16 w = w*0.5;

17

18 w.print();

19

20 return 0;

21 }

prints:

-2.54

0

0

6.2

0

-1.27

0

0

3.1

0

38

Other binary arithmetic operators could also be implements as friend
functions, e.g., vector addition and subtraction and component-wise multipli-
cation and division. Component-wise multiplication would overload operator*
for a third time but would accept two vectors as function arguments.

Overloading operator� We may overload operator� to send things to
the output stream. This is a more C++ way to print than our current
print function. We overload this operator by adding the following friend

declaration to the header:

1 friend std::ostream & operator<<(std::ostream & outs, const vector & v);

Note that the ostream object belongs to the std namespace. Next, we
add to the implementation �le:

1 std::ostream & operator<<(std::ostream & outs, const vector & v) {

2 for(int i=0; i < v.len(); i++) {

3 outs << v.data[i] << "\n";

4 }

So now we stream the vector to std::cout just as we do for printing
numbers and strings to the screen:

1 #include <iostream>

2 #include "vector.h"

3

4 int main() {

5 vec::vector v(5);

6

7 v[0] = -1.27;

8 v[3] = 3.1;

9

10 std::cout << v;

11

12 return 0;

13 }

which prints

-1.27

0

39

0

3.1

0

7.2 Templating: a matrix class

Template classes allow you to generalize your classes. We will introduce the
concept of templating by creating a templated matrix class. Below is a bare-
bones template class for a matrix type. Note that the implementations for
templates must all go in the header �le; they cannot be split into seperate
implementation �les.

1 #ifndef MATRIX_H

2 #define MATRIX_H

3

4 #include <iostream>

5 #include <cstdlib>

6

7 namespace mtx {

8 template<class T>

9 class matrix {

10 public:

11 // Default empty constructor.

12 matrix() {}

13

14 // Constructor from matrix dimensions.

15 matrix(int m, int n) {

16 this->m = m; this->n = n;

17 this->data = new T[m*n];

18 // Initialize to zeros.

19 for(int i=0; i < m*n; i++) this->data[i] = T(0);

20 }

21

22 // Copy constructor.

23 matrix(const matrix & src) : matrix(src.m, src.n) {

24 for(int i=0; i < m; i++) {

25 for(int j=0; j < n; j++) {

26 (*this)(i,j) = src(i,j);

27 }

28 }

40

29 }

30

31 // Destructor.

32 ~matrix() { delete [] this->data; }

33

34 int n_rows() const { return this->m; }

35 int n_cols() const { return this->n; }

36

37 // Element accessor.

38 T & operator()(int i, int j) const {

39 #ifndef NDEBUG

40 check_indices(i,j);

41 #endif

42

43 // Data stored in row-major.

44 int k = i*this->n + j;

45

46 return this->data[k];

47 }

48 protected:

49 T * data;

50 int m; // n_rows

51 int n; // n_cols

52 void check_indices(int i, int j) const {

53 if (i < 0 || i >= this->m) {

54 std::cerr << "Invalid row index, " << i << ".\n"

55 << "Valid row indices are: 0-" << (this->m-1)

56 << ".\n";

57 exit(1);

58 }

59 if (j < 0 || j >= this->n) {

60 std::cerr << "Invalid column index, " << j << ".\n"

61 << "Valid column indices are: 0-" << (this->n-1)

62 << ".\n";

63 exit(1);

64 }

65 }

66 };

67 }

68

41

69 #endif

Observe how the class declaration begins with the statement, template<class
T>. When new instances of the class, matrix, are instantiated, the type, T,
must be speci�ed. Notice that the private variable now holds a pointer to
type, T, and the element accessor returns a reference to to type, T. Com-
pare this to our previous vector class where each vector instance held type,
double.

Also notice that the copy constructor uses something called an argu-
ment list. We've used it to call the initial constructor before proceeding
with the copying of components from the matrix instance, src. To use this
type of syntax (i.e., initializer lists) you may have to compiel with the �ag
-std=c++11, e.g., g++ -std=c++11 main.cpp.

Finally, observe that rather the keyword, private, we have used the
keyword protected. This will allow inherited classes to use the private
member variables and functions. We will talk about inheritance later, but
for now, it essentially the same as marking these things as private.

Here is some example usage:

1 #include <iostream>

2 #include "matrix.h"

3

4 int main() {

5 mtx::matrix<float> A(10, 10);

6 mtx::matrix<double> B(10, 12);

7

8 A(0,0) = 3.14;

9 B(2,4) = -2*A(0,0);

10

11 std::cout << A(0,0) << "\n";

12 std::cout << B(2,4) << "\n";

13

14 mtx::matrix<double> C = B;

15 mtx::matrix<bool> D(3,3);

16

17 std::cout << C(2,4) << "\n";

18 std::cout << D(0,0) << "\n";

19

20 C(0,12);

21

42

22 return 0;

23 }

Outputs:

3.14

-6.28

-6.28

0

Invalid column index, 12.

Valid column indices are: 0-11.

7.2.1 Overloading operator*

Let us overload operator* to implement matrix multiplication. It would also
make sense to overload operator* with other call signatures to implement
scalar multiplication or vector broadcasting, but for now we will just stick
with matrix multiplication.

Add the following two non-friend, non-member functions. They should
be de�ned just after the class de�nition, but they should remain in the body
of namespace, mtx.

1 template<class T>

2 matrix<T> operator*(const matrix<T> & L, const matrix<T> & R) {

3 #ifndef NDEBUG

4 check_sizes_for_matmul(L, R);

5 #endif

6

7 matrix<T> P(L.n_rows(), R.n_cols());

8 for(int i=0; i < L.n_rows(); i++) {

9 for(int j=0; j < R.n_cols(); j++) {

10 // Inner product between row `i` of matrix, `L`

11 // and column `j` of matrix, `R`.

12 for(int k=0; k < L.n_cols(); k++) {

13 P(i,j) += L(i,k)*R(k,j);

14 }

15 }

16 }

17

18 return P;

19 }

43

20

21 template<class T>

22 void check_sizes_for_matmul(const matrix<T> & L, const matrix<T> & R) {

23 if (L.n_cols() != R.n_rows()) {

24 std::cerr << "Size mismatch for matrix multiplication.\n"

25 << "Left matrix has " << L.n_cols() << " cols, but\n"

26 << "right matrix has " << R.n_rows() << " rows.\n";

27 exit(1);

28 }

29 }

Note that because we've chosen to implement these functions as non-
member and non-friend, we must pre�x the function de�nitions with template<class
T>. This isn't necessary when the functions were declared inside of the class
body (i.e., member or friend functions) since the class declaration already
begins with template<class T>.

We've added a simple matrix multiplcation function above and a debug-
ger functions to ensure that if two matrices are multiplied, that it is well-
de�ned to do so. Otherwise, we print an error message and abort, as with
the element accessor function. We've also wrapped the debugger function
with compiler macros, so that it can be left out if we choose to do so.

Here is some example usage:

1 #include <iostream>

2 #include "matrix.h"

3

4 int main() {

5 mtx::matrix<double> A(2,2);

6 mtx::matrix<double> B(2,3);

7

8 A(0,0) = A(0,1) = A(1,0) = 1; A(1,1) = -1;

9

10 B(0,0) = B(1,0) = 1;

11 B(0,1) = B(1,1) = -1;

12 B(0,2) = B(1,2) = 3;

13

14

15 mtx::matrix<double> C = A*B;

16

17 for(int i=0; i < C.n_rows(); i++) {

44

18 for(int j=0; j < C.n_cols(); j++) {

19 std::cout << C(i,j);

20 if (j < C.n_cols()-1)

21 std::cout << ", ";

22 }

23 std::cout << "\n";

24 }

25

26 B*A;

27

28 return 0;

29 }

Output:

2, -2, 6

0, 0, 0

Size mismatch for matrix multiplication.

Left matrix has 3 cols, but

right matrix has 2 rows.

7.3 Inheritance

Often classes have a natural, hierarchical structure. For example, a row or
column vector could be seen as natural "subclass" of the matrix class. So,
supposing we had only written the matrix class, it would be nice if we could
write a row or column vector class that inherited many of the properties of
the parent matrix class, but with additional properties, unique to the vector
classes. This is what inheritance may allow us to do.

Let's create another couple of vector classes, called rowvec and colvec

in a �le called vectors.h:

1 #ifndef VECTORS_H

2 #define VECTORS_H

3

4 #include "matrix.h"

5

6 namespace vec {

7 // Row vector class inherits from the matrix class.

8 template<class T>

9 class rowvec : public mtx::matrix<T> {

45

10 public:

11 // Constructor.

12 rowvec(int n) : mtx::matrix<T>(1, n) {}

13

14 // A length function.

15 int len() const { return this->n_cols(); }

16

17 // Accessors.

18 T & operator()(int i) const { return mtx::matrix<T>::operator()(0, i); }

19 // Add [] as a possibility, too.

20 T & operator[](int i) const { return (*this)(i); }

21 };

22

23 // Column vector class also inherits from the matrix class.

24 template<class T>

25 class colvec : public mtx::matrix<T> {

26 public:

27 // Constructor.

28 colvec(int n) : mtx::matrix<T>(n, 1) {}

29

30 // A length function.

31 int len() const { return this->n_rows(); }

32

33 // Accessor.

34 T & operator()(int i) const { return mtx::matrix<T>::operator()(i, 0); }

35 // Add [] as a possibility, too.

36 T & operator[](int i) const { return (*this)(i); }

37 };

38 }

39

40 #endif

We have de�ned two classes in the vec namespace, rowvec and colvec.
Notice that the declaration of the rowvec class is slightly augmented,

1 class rowvec : public mtx::matrix<T> {

2 // ...

3 };

This says that the rowvec class inherits all the methods and variables
de�ned for the matrix class. The keyword protected, rather than private

46

in the matrix class allows derived classes access to these variables and func-
tions. The keyword, public, in the class declaration above signals that
every rowvec<T> instance may be cast as a matrix<T> instance. This means
that functions (such as our operator* in the mtx namespace) which expect
matrix types in argument, can also now accept rowvec types: rowvec in-
stances will be cast as matrix instances when possible.

Next, observe that the constructor simply calls the parent class construc-
tor, with an argument of 1 for the number of rows. We also add a len()

function which returns `ncols()`, calling the parent class function. len() is
more natural for a vector class.

Finally, operator() is overwritten so that only a single argument is
necessary. In the body, we simply call the parent class method. We also
add operator[], which duplicates the functionality of operator().

Notice that any other methods that exist for the parent class, matrix,
have been inherited. For example, it is not necessary to write a new destruc-
tor function since this already exists for the parent and the functionality is
the same.

In the same, vec, namespace we have declared a colvec class which is
analogous to the rowvec class except with the dimensions swapped.

Let's check out an example:

1 #include <iostream>

2 #include "matrix.h"

3 #include "vectors.h"

4

5 int main() {

6 vec::rowvec<float> x(5);

7 vec::colvec<float> y(5);

8

9 for(int i=0; i < x.len(); i++) {

10 x(i) = i;

11 y[i] = -i; // elements may be accessed with either operator.

12 }

13

14 // `rowvec` and `colvec` inherit from `matrix`,

15 // so `operator*` is well-defined if the shapes

16 // align, which always do for `rowvec` * `colvec`.

17 // However, the result is a `matrix` object.

18 mtx::matrix<float> a = x*y;

19

47

20 std::cout << a.n_rows() << ", " << a.n_cols()

21 << " ... " << a(0,0) << "\n";

22

23 return 0;

24 }

This prints:

1, 1 ... -30

So operator* works by casting both the rowvec and colvec arguments
as matrix types. The dimensions of these matrices match for matrix multipli-
cation and the resulting 1x1 matrix is returned. Let's overwrite this behavior
to return a scalar instead of a matrix when the operation, rowvec*colvec is
performed. Add the inside the vec namespace but outside the class declara-
tions:

1 // Overwrite the matrix inherited `operator*`

2 // so that a scalar is returned when a `rowvec` and

3 // `colvec` are multiplied.

4 template<class T>

5 T operator*(const rowvec<T> & x, const colvec<T> & y) {

6 // Use the inherited matrix operator defined in the `mtx` namespace.

7 mtx::matrix<T> a = mtx::operator*(x,y);

8 // Grab the only entry.

9 T z = a(0,0);

10 // And return it.

11 return z;

12 }

Observe that we can call the operator* function in the mtx namespace,
just like any other function. Now, the product between a rowvec and a
colvec is more natural:

1 #include <iostream>

2 #include "matrix.h"

3 #include "vectors.h"

4

5 int main() {

6 vec::rowvec<float> x(5);

7 vec::colvec<float> y(5);

48

8

9 for(int i=0; i < x.len(); i++) {

10 x(i) = i;

11 y[i] = -i; // elements may be accessed with either operator.

12 }

13

14 float a = x*y;

15 std::cout << a << "\n";

16

17 return 0;

18 }

Output:

-30

49

	Introduction
	A little about the language
	Additional references
	License, source, etc.

	Getting started
	Text editors
	Compilers
	Writing a program

	Data types
	The bool type
	int types
	Floating point types
	Casting
	The const modifier
	The typedef keyword
	Pointers and references
	Pointers
	References

	Arrays
	Fixed length arrays
	Dynamic length arrays

	Control structures
	Conditionals
	Example: if / else and random number generation
	Example: if / else if / else

	Loops
	The for loop
	The while loop
	The break keyword

	Input / Output
	Inputs to main: argc and argv
	Filestreams
	Reading data from a file
	Writing data to a file

	Functions
	Writing a function
	Example: linspace: generating a set of equally-spaced points

	Header and implementation files
	The header file
	The implementation file
	The file containing main

	Function pointers
	Example: Newton's method for rootfinding
	Example: The midpoint rule for definite integrals

	Object-oriented programming
	Example: a vector class
	The header file
	The implementation file
	Example usage
	Operator overloading
	The copy constructor
	Friend functions

	Templating: a matrix class
	Overloading operator*

	Inheritance

