Papers
     Duan, H., Ökten, G. (2025) Derivative-based Shapley value for 
     global sensitivity analysis and machine learning explainability, 
     International Journal for Uncertainty Quantification, 15(1), pp 1-16. 
    
    Ökten, G. (2024) Number Sequences for Simulation, In “Diophantine problems: Determinism, Randomness,
	and Applications", Panoramas et Synthèses, Eds. Kreso, D., Rivat, J., Tichy, F. R. Société
	Mathématique de France, pp. 161–190.
     Duan, H., Ökten, G. (2023) Control 
     variate Monte Carlo estimators based on sparse polynomial chaos expansion. 
    Socio-Environmental Systems Modelling, Vol 5, 18568. Special issue: Sensitivity Analysis of Model Output. 
    
    Yue, R., Duan, H., Uzunoğlu, B., Ökten, G. (2022) A comparison of global sensitivity methods for power systems. 
    In IEEE ICSRS 2022 6th International Conference on System Reliability and Safety, November 23-25, 2022, Venice, Italy.
    
    Salehy, N., Ökten, G. (2022) 
    Monte Carlo and quasi-Monte Carlo methods for Dempster’s rule of combination. 
    International Journal of Approximate Reasoning, Vol 145, pp 163-186. https://doi.org/10.1016/j.ijar.2022.03.008
    
    Chen, Y., Ökten, G. (2022) A goodness-of-fit test for copulas based on the collision test. 
    Statistical Papers, 63(5), 1369-1385.
    
    Salehy, N., Ökten, G. (2021) Dempster-Shafer Theory for Stock Selection. 
    IEEE 45th Annual 
    Computers, Software, and Applications Conference (COMPSAC), July 12-16, 2021.
    
    Fox, J., Ökten, G. (2021) Polynomial Chaos as a Control Variate Method. SIAM Journal on Scientific 
    Computing, 43(3), pp A2268-A2294.
    
    Fox, J., Ökten, G. (2021) Brownian Path Generation with Polynomial Chaos, SIAM Journal on Financial 
    Mathematics, 12(2), pp 724-743.
    
    Ökten, G., Liu, Y. (2021) Randomized quasi-Monte Carlo methods in global sensitivity analysis. Reliability Engineering & 
    System Safety, Volume 210, 107520, ISSN 0951-8320.
    
    Polala, A., Ökten, G. (2020) Implementing de-biased estimators using mixed sequences. 
    Monte Carlo Methods and Applications, 26 (4), 293-301.
    
    Mandel, D., Ökten, G. (2020) Randomized Global Sensitivity
      Analysis and Model Robustness. In: Tuffin B., L'Ecuyer P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324, pp 403-421. Springer, Cham.
      
      Fox, J., Ökten, G., Uzunoğlu, B. (2019) Global Sensitivity Analysis for Power Systems via Quasi-Monte Carlo Methods. In: IEEE ICSRS 2019 4th International Conference on System Reliability and Safety,
      November 20-22, 2019, Rome, Italy.
      
      Cellat, S., Fan, Y., Mio, W., Ökten, G. (2019). Learning Shape Metrics
      with Monte Carlo Optimization. Journal of Computational and
      Applied Mathematics, 348, 120-129.
      
      Nguyen, N., Xu, L., Ökten, G. (2018). A Quasi-Monte Carlo
      Implementation of the Ziggurat Method. Monte Carlo Methods and
      Applications, 24 2, 93-99.
      
      Tzeng, Y., Beaumont, P., Ökten, G. (2018). Time Series Simulation
      with Randomized Quasi-Monte Carlo Methods: An Application to Value
      at Risk and Expected Shortfall. Computational Economics, 52 1, 55-77.
      
      Mandel, D., Ökten, G. (2018). Randomized Sobol' Sensitivity Indices. In Art Owen,
      Peter W. Glynn (Eds.), Monte Carlo and Quasi-Monte Carlo Methods,
      Springer Proceedings in Mathematics and Statistics, vol 241, pp.
      395-408. Springer International Publishing.
      
      Nguyen, N., Ökten, G. (2016). The acceptance-rejection
      algorithm for low-discrepancy sequences. Monte Carlo Methods and
      Applications, 22(2), 133-148.
    
    Huang, W., Ewald, B., Ökten, G. (2016). CAM Stochastic Volatility
                Model for Option Pricing. Mathematical Problems in
                Engineering, Vol 2016,
                (Special issue on
                Nonlinear Problems: Mathematical Modeling, Analyzing,
                and Computing for Finance 2016.)
    
    Liu, Y., Hussaini, M. Y., & Ökten,
                  G. (2016). Accurate Construction of High Dimensional
                  Model Representation with Applications to Uncertainty
                  Quantification. Reliability Engineering &
                System Safety, 152, 281-295.
                 
            Göncü, A., Liu, Y., Ökten, G., Hussaini, Y. (2016). Global
          Sensitivity Analysis in Weather Derivatives Pricing. In Ronald
          Cools, & Dirk Nuyens (Eds.), Monte Carlo and Quasi-Monte
          Carlo Methods, MCQMC, Leuven, Belgium, April 2014 (pp. 15).
          Springer Proceedings in Mathematics & Statistics Vol 163,
          Springer-Verlag. 
          
        Liu, Y., Hussaini, M. Y., & Ökten, G. (2015). Global
        Sensitivity Analysis for the Rothermel Model Based on High
        Dimensional Model Representation. Canadian Journal of Forest
        Research 45(11), 1474-1479. 
        (Earlier version appeared in the conference proceedings: In Wade
        D.D & Fox R.L (Eds), Robinson ML (Comp), Proceedings of 4th
        Fire Behavior and Fuels Conference, 18-22 February 2013,
        Raleigh, NC and 1-4 July 2013, St. Petersburg, Russia (pp.
        51-61). International Association of Wildland Fire: Missoula,
        MT.)
        
        Xu, L., & Ökten, G. (2015). High Performance Financial
        Simulation Using Randomized Quasi-Monte Carlo Methods.
        Quantitative Finance 15 (8), 1425-1436. doi:
        10.1080/14697688.2015.1032549
        
      Liu, Y., Jimenez, E., Hussaini, Y. M., & Ökten, G.,
      Goodrick, S. (2015). Parametric Uncertainty Quantification in the
      Rothermel Model with Randomized Quasi-Monte Carlo Methods.
      International Journal of Wildland Fire, 24, 307-316.
      http://dx.doi.org/10.1071/WF13097
    
    Yuan, W., Göncü, A., & Ökten, G. (2015).
            Estimating Sensitivities of Temperature Based Weather
            Derivatives. Applied Economics, 47 (19), 1942-1955. doi: 10.1080/00036846.2014.1002888
        
      
      Göncü, A., & Ökten, G. (2014). Efficient Simulation of a
      Multi-factor Stochastic Volatility Model. Journal of Computational
      and Applied Mathematics, 259, 329-335.  doi:
      10.1016/j.cam.2013.03.002
      
      Göncü, A., & Ökten, G. (2014). Uniform point sets and the
      collision test. Journal of Computational and Applied Mathematics,
      259, 798-804. doi: 10.1016/j.cam.2013.07.019
      
      Liu, Y., Hussaini, M. Y., & Ökten, G. (2013). Optimization of
      a Monte Carlo Variance Reduction Method Based on Sensitivity
      Derivatives. Applied Numerical Mathematics, 72, 160-171. doi:
      10.1016/j.apnum.2013.06.005
      
      Ökten, G., Shah, M., & Goncharov, Y. (2012). Random and
      Deterministic Digit Permutations of the Halton Sequence. In Lezsek
      Plaskota, & Henrik Woźniakowski (Eds.), 9th International
      Conference on Monte Carlo and Quasi-Monte Carlo Methods in
      Scientific Computing, Warsaw, Poland, August 15-20, 2010 (pp.
      589-602). Springer-Verlag Berlin Heidelberg.
      
      Ökten, G., & Göncü, A. (2011). Generating low-discrepancy
      sequences from the normal distribution: Box-Muller or inverse
      transformation? Mathematical and Computer Modelling, 53,
      1268-1281.
      
      Ökten, G., & Willyard, M. (2010). Parameterization based on
      randomized quasi-Monte Carlo methods. Parallel Computing, 36,
      415-422.
      (This article also appeared in the Proceedings of the 1st Intl.
      Workshop on Parallel and Distributed Computing in Finance, IEEE
      International Parallel & Distributed Processing Symposium,
      4/18/08, Miami, FL.)
      
      Tiryakioglu, M., Ökten, G., Hudak, D., Shuey, R. T., & Suni,
      J. P. (2010). On Evaluating Fit of the Lifshitz-Slyozov-Wagner
      (LSW) Distribution to Particle Size Data. Materials Science &
      Engineering A, 527, 1636-1639.
      
      Ökten, G., & Gnewuch, M. (2009). Correction of a Proof in "A
      Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo
      Sequence and Applications". Monte Carlo Methods and Applications,
      15, 2, 169-172.
      
      Gisser, M., McClure, J., Ökten, G., & Santoni, G. (2009). Some
      Anomalies Arising from Bandwagons that Impart Upward-Sloping
      Segments to Market Demand. Econ Journal Watch, 6, 1, 21-34.
      
      Tiryakioglu, M., Ökten, G., & Hudak, D. (2009). Statistics for
      Estimating the Population Average of a Lifshitz-Slyozov-Wagner
      (LSW) Distribution. Journal of Materials Science, 44, 21,
      5754-5759.
      
      Tiryakioglu, M., Ökten, G., & Hudak, D. (2009). On Evaluating
      Weibull Fits to Mechanical Testing Data. Materials Science &
      Engineering A, 527, 1-2, 397-399.
      
      Õkten, G. (2009). Generalized von Neumann-Kakutani transformation
      and random-start scrambled Halton sequences. Journal of
      Complexity, 25, 4, 318-331.
      
      Ökten, G., Salta, E., & Göncü, A. (2008). On Pricing Discrete
      Barrier Options Using Conditional Expectation and Importance
      Sampling Monte Carlo. Mathematical and Computer Modelling, 47,
      484-494.
      
      Goncharov, Y., Ökten, G., & Shah, M. (2007). Computation of
      the endogenous mortgage rates with randomized quasi-Monte Carlo
      simulations. Mathematical and Computer Modelling, 46, 459-481.
      
      Lorch, J., & Ökten, G. (2007). Primes and Probability: The
      Hawkins Random Sieve. Mathematics Magazine, 80, 2, 112-119.
      
      Ökten, G., Tuffin, B., & Burago, V. (2006). A central limit
      theorem and improved error bounds for a hybrid-Monte Carlo
      sequence with applications in computational finance. Journal of
      Complexity, 22, 4, 435-458.
      
      Sivakumar, A., Bhat, C. R., & Ökten, G. (2006). Simulation
      Estimation of Mixed Discrete Choice Models with the Use of
      Randomized Quasi-Monte Carlo Sequences: A Comparative Study.
      Transportation Research Record, 1921, 112-122.
      
      Ökten, G. (2005). Solving Linear Equations by Monte Carlo Methods.
      SIAM Journal on Scientific Computing, 27, 2, 511-531.
      
      Ökten, G., & Eastman, W. (2004). Randomized Quasi-Monte Carlo
      Methods in Pricing Securities. Journal of Economic Dynamics and
      Control, 28, 2399-2426.
      
      Ökten, G. (2002). Random Sampling from Low-Discrepancy Sequences:
      Applications to Option Pricing. Mathematical and Computer
      Modelling, 35, 1221-1234.
      
      Ökten, G., & Srinivasan, A. (2002). Parallel Quasi-Monte Carlo
      Applications on a Heterogeneous Cluster. In Kai T. Fang, Fred J.
      Hickernell, & Harald Niederreiter (Eds.), Proceedings of the
      Fourth International Conference on Monte Carlo and Quasi-Monte
      Carlo Methods in Scientific Computing, Hong Kong Baptist
      University, Hong Kong, China (pp. 406-421). Springer-Verlag,
      Berlin, 2002.
      
      Thomas, D. A., Ökten, G., & Buis, P. (2002). On-Line
      Assessment of Higher-Order Thinking Skills: A Java-Based Extension
      to Closed-Form Testing. In Sixth International Conference on
      Teaching Statistics, Durban, South Africa (pp. 1-4). International
      Association for Statistical Education, The University of Auckland,
      New Zealand. Retrieved from
      http://www.stat.auckland.ac.nz/~iase/publications/1/6d4_thom.pdf
      
      Ökten, G. (2001). High Dimensional Simulation. Mathematics and
      Computers in Simulation, 55, 215-222.
      
      Ökten, G. (2000). Applications of a Hybrid-Monte Carlo Sequence to
      Option Pricing. In Harald Niederreiter, & Jerome Spanier
      (Eds.), Third International Conference on Monte Carlo and
      Quasi-Monte Carlo Methods in Scientific Computing, Claremont
      Graduate University, Claremont, CA (pp. 391-406). Springer-Verlag,
      Berlin.
      
      Ökten, G. (1999). Quasi-Monte Carlo Methods in Option Pricing.
      Mathematica in Education and Research, 8, 3-4, 52-57.
      
      Ökten, G. (1999). Error Reduction Techniques in Quasi-Monte Carlo
      Integration. Mathematical and Computer Modelling, 30, 7-8, 61-69.
      
      Ökten, G. (1998). Error Estimation for Quasi-Monte Carlo Methods.
      In Harald Niederreiter, Peter Hellekalek, Gerhard Larcher, &
      Peter Zinterhof (Eds.), Second International Conference on Monte
      Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
      University of Salzburg, Austria (pp. 353-368). Springer-Verlag,
      New York.
      
      Ökten, G. (1996). A Probabilistic Result on the Discrepancy of a
      Hybrid-Monte Carlo Sequence and Applications. Monte Carlo Methods
      and Applications, 2, 4, 255-270.
      
    
    Newsletter Articles
    Ökten, G. (2000, November). Mathematics Explore
      New Ideas, Uses. Claremont COURIER, 20.
      
      Ökten, G. (1998, February). Monte Carlo Methods. Arctic Region
      Supercomputing Center CRAY T3E Users' Group Newsletter, 136, N/A.