Papers
Journal and conference publications, followed by newsletter articles.
Papers
- Duan, H., Ökten, G. (2025) Derivative-based Shapley value for global sensitivity analysis and machine learning explainability, International Journal for Uncertainty Quantification, 15(1), pp 1-16.
- Ökten, G. (2024) Number Sequences for Simulation, In “Diophantine problems: Determinism, Randomness, and Applications", Panoramas et Synthèses, Eds. Kreso, D., Rivat, J., Tichy, F. R. Société Mathématique de France, pp. 161–190.
- Duan, H., Ökten, G. (2023) Control variate Monte Carlo estimators based on sparse polynomial chaos expansion. Socio-Environmental Systems Modelling, Vol 5, 18568. Special issue: Sensitivity Analysis of Model Output.
- Yue, R., Duan, H., Uzunoğlu, B., Ökten, G. (2022) A comparison of global sensitivity methods for power systems. In IEEE ICSRS 2022 6th International Conference on System Reliability and Safety, November 23-25, 2022, Venice, Italy.
- Salehy, N., Ökten, G. (2022) Monte Carlo and quasi-Monte Carlo methods for Dempster’s rule of combination. International Journal of Approximate Reasoning, Vol 145, pp 163-186. https://doi.org/10.1016/j.ijar.2022.03.008
- Chen, Y., Ökten, G. (2022) A goodness-of-fit test for copulas based on the collision test. Statistical Papers, 63(5), 1369-1385.
- Salehy, N., Ökten, G. (2021) Dempster-Shafer Theory for Stock Selection. IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), July 12-16, 2021.
- Fox, J., Ökten, G. (2021) Polynomial Chaos as a Control Variate Method. SIAM Journal on Scientific Computing, 43(3), pp A2268-A2294.
- Fox, J., Ökten, G. (2021) Brownian Path Generation with Polynomial Chaos, SIAM Journal on Financial Mathematics, 12(2), pp 724-743.
- Ökten, G., Liu, Y. (2021) Randomized quasi-Monte Carlo methods in global sensitivity analysis. Reliability Engineering & System Safety, Volume 210, 107520, ISSN 0951-8320.
- Polala, A., Ökten, G. (2020) Implementing de-biased estimators using mixed sequences. Monte Carlo Methods and Applications, 26(4), 293-301.
- Mandel, D., Ökten, G. (2020) Randomized Global Sensitivity Analysis and Model Robustness. In: Tuffin B., L'Ecuyer P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324, pp 403-421. Springer, Cham.
- Fox, J., Ökten, G., Uzunoğlu, B. (2019) Global Sensitivity Analysis for Power Systems via Quasi-Monte Carlo Methods. In: IEEE ICSRS 2019 4th International Conference on System Reliability and Safety, November 20-22, 2019, Rome, Italy.
- Cellat, S., Fan, Y., Mio, W., Ökten, G. (2019) Learning Shape Metrics with Monte Carlo Optimization. Journal of Computational and Applied Mathematics, 348, 120-129.
- Nguyen, N., Xu, L., Ökten, G. (2018) A Quasi-Monte Carlo Implementation of the Ziggurat Method. Monte Carlo Methods and Applications, 24(2), 93-99.
- Tzeng, Y., Beaumont, P., Ökten, G. (2018) Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall. Computational Economics, 52(1), 55-77.
- Mandel, D., Ökten, G. (2018) Randomized Sobol' Sensitivity Indices. In Art Owen, Peter W. Glynn (Eds.), Monte Carlo and Quasi-Monte Carlo Methods, Springer Proceedings in Mathematics and Statistics, vol 241, pp. 395-408. Springer International Publishing.
- Nguyen, N., Ökten, G. (2016) The acceptance-rejection algorithm for low-discrepancy sequences. Monte Carlo Methods and Applications, 22(2), 133-148.
- Huang, W., Ewald, B., Ökten, G. (2016) CAM Stochastic Volatility Model for Option Pricing. Mathematical Problems in Engineering, Vol 2016 (Special issue on Nonlinear Problems: Mathematical Modeling, Analyzing, and Computing for Finance 2016.)
- Liu, Y., Hussaini, M. Y., & Ökten, G. (2016) Accurate Construction of High Dimensional Model Representation with Applications to Uncertainty Quantification. Reliability Engineering & System Safety, 152, 281-295.
- Göncü, A., Liu, Y., Ökten, G., Hussaini, Y. (2016) Global Sensitivity Analysis in Weather Derivatives Pricing. In Ronald Cools, & Dirk Nuyens (Eds.), Monte Carlo and Quasi-Monte Carlo Methods, MCQMC, Leuven, Belgium, April 2014. Springer Proceedings in Mathematics & Statistics, Vol 163, Springer-Verlag.
- Liu, Y., Hussaini, M. Y., & Ökten, G. (2015) Global Sensitivity Analysis for the Rothermel Model Based on High Dimensional Model Representation. Canadian Journal of Forest Research, 45(11), 1474-1479. (Earlier version appeared in the conference proceedings: Proceedings of 4th Fire Behavior and Fuels Conference, 18-22 February 2013, Raleigh, NC and 1-4 July 2013, St. Petersburg, Russia, pp. 51-61.)
- Xu, L., & Ökten, G. (2015) High Performance Financial Simulation Using Randomized Quasi-Monte Carlo Methods. Quantitative Finance, 15(8), 1425-1436. doi: 10.1080/14697688.2015.1032549
- Liu, Y., Jimenez, E., Hussaini, Y. M., & Ökten, G., Goodrick, S. (2015) Parametric Uncertainty Quantification in the Rothermel Model with Randomized Quasi-Monte Carlo Methods. International Journal of Wildland Fire, 24, 307-316. http://dx.doi.org/10.1071/WF13097
- Yuan, W., Göncü, A., & Ökten, G. (2015) Estimating Sensitivities of Temperature Based Weather Derivatives. Applied Economics, 47(19), 1942-1955. doi: 10.1080/00036846.2014.1002888
- Göncü, A., & Ökten, G. (2014) Efficient Simulation of a Multi-factor Stochastic Volatility Model. Journal of Computational and Applied Mathematics, 259, 329-335. doi: 10.1016/j.cam.2013.03.002
- Göncü, A., & Ökten, G. (2014) Uniform point sets and the collision test. Journal of Computational and Applied Mathematics, 259, 798-804. doi: 10.1016/j.cam.2013.07.019
- Liu, Y., Hussaini, M. Y., & Ökten, G. (2013) Optimization of a Monte Carlo Variance Reduction Method Based on Sensitivity Derivatives. Applied Numerical Mathematics, 72, 160-171. doi: 10.1016/j.apnum.2013.06.005
- Ökten, G., Shah, M., & Goncharov, Y. (2012) Random and Deterministic Digit Permutations of the Halton Sequence. In Lezsek Plaskota, & Henrik Woźniakowski (Eds.), 9th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Warsaw, Poland, August 15-20, 2010, pp. 589-602. Springer-Verlag Berlin Heidelberg.
- Ökten, G., & Göncü, A. (2011) Generating low-discrepancy sequences from the normal distribution: Box-Muller or inverse transformation? Mathematical and Computer Modelling, 53, 1268-1281.
- Ökten, G., & Willyard, M. (2010) Parameterization based on randomized quasi-Monte Carlo methods. Parallel Computing, 36, 415-422. (Also appeared in: 1st Intl. Workshop on Parallel and Distributed Computing in Finance, IEEE IPDPS, 4/18/08, Miami, FL.)
- Tiryakioglu, M., Ökten, G., Hudak, D., Shuey, R. T., & Suni, J. P. (2010) On Evaluating Fit of the Lifshitz-Slyozov-Wagner (LSW) Distribution to Particle Size Data. Materials Science & Engineering A, 527, 1636-1639.
- Ökten, G., & Gnewuch, M. (2009) Correction of a Proof in "A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications". Monte Carlo Methods and Applications, 15(2), 169-172.
- Gisser, M., McClure, J., Ökten, G., & Santoni, G. (2009) Some Anomalies Arising from Bandwagons that Impart Upward-Sloping Segments to Market Demand. Econ Journal Watch, 6(1), 21-34.
- Tiryakioglu, M., Ökten, G., & Hudak, D. (2009) Statistics for Estimating the Population Average of a Lifshitz-Slyozov-Wagner (LSW) Distribution. Journal of Materials Science, 44(21), 5754-5759.
- Tiryakioglu, M., Ökten, G., & Hudak, D. (2009) On Evaluating Weibull Fits to Mechanical Testing Data. Materials Science & Engineering A, 527(1-2), 397-399.
- Õkten, G. (2009) Generalized von Neumann-Kakutani transformation and random-start scrambled Halton sequences. Journal of Complexity, 25(4), 318-331.
- Ökten, G., Salta, E., & Göncü, A. (2008) On Pricing Discrete Barrier Options Using Conditional Expectation and Importance Sampling Monte Carlo. Mathematical and Computer Modelling, 47, 484-494.
- Goncharov, Y., Ökten, G., & Shah, M. (2007) Computation of the endogenous mortgage rates with randomized quasi-Monte Carlo simulations. Mathematical and Computer Modelling, 46, 459-481.
- Lorch, J., & Ökten, G. (2007) Primes and Probability: The Hawkins Random Sieve. Mathematics Magazine, 80(2), 112-119.
- Ökten, G., Tuffin, B., & Burago, V. (2006) A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance. Journal of Complexity, 22(4), 435-458.
- Sivakumar, A., Bhat, C. R., & Ökten, G. (2006) Simulation Estimation of Mixed Discrete Choice Models with the Use of Randomized Quasi-Monte Carlo Sequences: A Comparative Study. Transportation Research Record, 1921, 112-122.
- Ökten, G. (2005) Solving Linear Equations by Monte Carlo Methods. SIAM Journal on Scientific Computing, 27(2), 511-531.
- Ökten, G., & Eastman, W. (2004) Randomized Quasi-Monte Carlo Methods in Pricing Securities. Journal of Economic Dynamics and Control, 28, 2399-2426.
- Ökten, G. (2002) Random Sampling from Low-Discrepancy Sequences: Applications to Option Pricing. Mathematical and Computer Modelling, 35, 1221-1234.
- Ökten, G., & Srinivasan, A. (2002) Parallel Quasi-Monte Carlo Applications on a Heterogeneous Cluster. In Kai T. Fang, Fred J. Hickernell, & Harald Niederreiter (Eds.), Proceedings of the Fourth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Hong Kong Baptist University, Hong Kong, China, pp. 406-421. Springer-Verlag, Berlin, 2002.
- Thomas, D. A., Ökten, G., & Buis, P. (2002) On-Line Assessment of Higher-Order Thinking Skills: A Java-Based Extension to Closed-Form Testing. In Sixth International Conference on Teaching Statistics, Durban, South Africa, pp. 1-4. International Association for Statistical Education, The University of Auckland, New Zealand. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/1/6d4_thom.pdf
- Ökten, G. (2001) High Dimensional Simulation. Mathematics and Computers in Simulation, 55, 215-222.
- Ökten, G. (2000) Applications of a Hybrid-Monte Carlo Sequence to Option Pricing. In Harald Niederreiter, & Jerome Spanier (Eds.), Third International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Claremont Graduate University, Claremont, CA, pp. 391-406. Springer-Verlag, Berlin.
- Ökten, G. (1999) Quasi-Monte Carlo Methods in Option Pricing. Mathematica in Education and Research, 8(3-4), 52-57.
- Ökten, G. (1999) Error Reduction Techniques in Quasi-Monte Carlo Integration. Mathematical and Computer Modelling, 30(7-8), 61-69.
- Ökten, G. (1998) Error Estimation for Quasi-Monte Carlo Methods. In Harald Niederreiter, Peter Hellekalek, Gerhard Larcher, & Peter Zinterhof (Eds.), Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, University of Salzburg, Austria, pp. 353-368. Springer-Verlag, New York.
- Ökten, G. (1996) A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications. Monte Carlo Methods and Applications, 2(4), 255-270.
Newsletter articles
- Ökten, G. (2000, November). Mathematics Explore New Ideas, Uses. Claremont COURIER, 20.
- Ökten, G. (1998, February). Monte Carlo Methods. Arctic Region Supercomputing Center CRAY T3E Users' Group Newsletter, 136, N/A.